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Abstract— In this paper, we introduce a new boundary
control synthesis problem with temporal logic specifications for
a wide range of linear partial differential equations. We leverage
the finite element method (FEM) to reduce the problem to a
control problem for discrete-time linear systems. The specifica-
tions are formalized using an extension of signal temporal logic
(STL), called Spatial-STL (S-STL). A conservative procedure
to reformulate the specification into a regular STL formula as
part of the FEM reduction is presented. A mixed-integer linear
encoding is then used to synthesize the control inputs from
a given allowed set. We illustrate the algorithm on one- and
two-dimensional heat and wave propagation equations.

I. INTRODUCTION

Partial differential equations (PDEs) model nearly all of
the physical systems and processes of interest to scien-
tists and engineers. Some well-known examples include the
Navier-Stokes equation for fluid mechanics, the Maxwell
equations for electromagnetics, the Schrödinger equation for
quantum mechanics, the heat equation and the wave equation.
The analysis of these and other PDEs has had a tremendous
impact on society by enabling our understanding of thermal,
electrical, fluidic and mechanical processes.

While a mature field, the study of PDEs is often ap-
proached through simulations in which approximate models
obtained through spatio-temporal discretization techniques,
such as the Finite Element Method (FEM) [1], are solved
numerically. These methods, however, do not allow for rigor-
ous guarantees that a system satisfies a complex specification.
Other approaches generalizing classic Ordinary Differential
Equations (ODEs) tools such as Lyapunov analysis and
backstepping [2] do provide some guarantees and can be
used to obtain boundary control strategies for a wide variety
of PDEs. However, they are restricted to classical control ob-
jectives such as stabilization, cost optimization and trajectory
tracking [3].

The formal statement of specifications and the develop-
ment of analysis techniques that can guarantee their satis-
faction by design has been the main focus of the formal
methods field. During the past decades, many specification
languages have been defined, such as Linear Temporal Logic
(LTL) [4] and Signal Temporal Logic (STL) [5]. Originally,
these logics have been applied to the study of finite systems,
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although more recently abstraction procedures have been
developed to reduce problems with ODEs to finite models
(for example through state space discretization [6] or mixed-
integer linear program (MILP) encodings [7]). However,
these techniques cannot be immediately applied to the anal-
ysis of PDEs due to the lack of spatial information in the
formal language. This issue was first addressed in [8] in the
context of spatially distributed systems, which can be viewed
as PDEs in a discretized spatial domain. In their work,
the authors view the system state as an image and define
a formal language with explicit spatial information called
Linear Superposition Logic (LSSL) based on quadtrees, a
tree-based abstraction of the system. In [9], a variant of
LSSL with quantitative semantics, Tree Spatial Superposition
Logic (TSSL), is used for (steady-state) pattern synthesis
in reaction diffusion systems, while in [10], a new formal
language combining TSSL and STL, Spatial Temporal Logic
(SpaTeL), allows the synthesis of dynamical patterns. The
specification of patterns in these logics is difficult, however,
and machine learning techniques are needed in order to
obtain logic formulas corresponding to a set of examples of
the desired pattern, which is not always available or desirable
for some applications where the system behavior must be
specified a priori. More recently, a new spatio-temporal logic
called STREL was introduced in [11] to specify the behavior
of mobile and spatially distributed Cyber-Physical Systems.

In this work, we extend STL to allow specifications over
the solutions of PDEs in such a way that both temporal
and spatial properties can be formally stated in a user-
friendly manner. We call the resulting language Spatial-STL
or S-STL. Then, we formulate and solve the problem of
synthesizing a boundary control input for a PDE such that
a property defined in S-STL is satisfied. To the best of our
knowledge, the boundary control synthesis of PDEs from
temporal constraints has not been explored before.

Our approach uses the FEM to approximate the trajectory
of the PDE by converting the PDE, as is standard with
the FEM [1], to a system of ODEs. The FEM is a well-
established numerical method to obtain approximate numer-
ical solutions to PDEs, and is particularly well-suited to
problems with complicated geometries where exact solutions
cannot be found. The state space of the resulting ODE
system represents the field values of the PDE at discrete
locations, called nodes, obtained after discretizing the do-
main. In the process of approximating the PDE trajectory
by the FEM model and then discretizing it both in space
(considering only the values at the nodes) and time, we
define a conservative reformulation of the specification that



follows the same approximation and discretization steps. In
order to account for the approximation and discretization
errors, we introduce correction terms in the formula in such
a way that all trajectories satisfying the corrected formula
also satisfy the original one. This procedure is similar to the
syntactical re-writing rules for MTL proposed in [12] in order
to automatically infer properties satisfied in a derived system
model (via simplification or implementation, for example)
from properties satisfied in the original model. Finally, we
encode the resulting control problem into a MILP following
previously established methods. If the control inputs are
given, it is trivial to adapt the method to solve a verification
problem instead.

Our method requires the PDE to be linear, which usually
constrains the physical system to linear material behavior.
However, this assumption is not overly restrictive as most
engineering systems are designed to operate within the linear
material response regime. We also assume linear boundary
conditions with respect to the control input.

II. PRELIMINARIES

A. Finite Element Method

In this section we provide a summary of the Finite Element
Method (FEM) [1]. For simplicity, we present the method
applied to a heat equation over a one-dimensional domain,
although the same technique can be applied to other PDEs.

Let Ω = (0, L) ⊂ R be an open interval representing the
interior of a one-dimensional rod of length L; ρ, c, κ > 0
constants denoting density, capacity and conductivity of the
rod’s material respectively; g = (g0, gL) ∈ R2 the (time-
independent) boundary conditions at each end of the rod;
and u0 : Ω → R an initial value for the temperature on the
rod. The evolution of the temperature at each point in the rod
can be described by a function u : Ω̄ × [0, T ] → R, where
T > 0 denotes the final time and can be infinity and Ω̄ is
the closure of Ω (which we call the spatial domain), such
that the following initial boundary value problem (IBVP) is
satisfied:

ΣH(u0, g)


ρc
∂u

∂t
− κ∂

2u

∂x2
= 0, on Ω× (0, T ) ,

u(0, t) = g0,∀t ∈ (0, T ) ,

u(L, t) = gL,∀t ∈ (0, T ) ,

u(x, 0) = u0(x),∀x ∈ Ω .

(1)

An important aspect of the FEM is the creation of a weak
formulation of the governing PDEs in (1). Its purpose is to
reduce the second order spatial derivative of u in (1) to first
derivatives so that low order (in this case, linear) polynomials
can be used to approximate the field value u. Let D be the
set of sufficiently smooth real-valued functions on Ω̄×(0, T )
such that all u ∈ D satisfy u(0, t) = g0, u(L, t) = gL,∀t ∈
(0, T ), and V a similar set of time independent functions
such that all w ∈ V satisfy w(0) = w(L) = 0. The problem

is to find u ∈ D such that for all w ∈ V ,∫
Ω

∂w

∂x
κ
∂u

∂x
dΩ +

∫
Ω

wρc
∂u

∂t
dΩ = 0 ,∫

Ω

wρcu(·, 0)dΩ =

∫
Ω

wρcu0dΩ .

(2)

We now obtain an approximate solution to the weak for-
mulation by considering (2) with u and w in subspaces of
D and V . Let {xi}n+1

i=0 , where x0 = 0, xn+1 = L, xi ∈
Ω, i = 1, ..., n, be a partition of Ω̄. Let di(t), i = 0, ..., n+ 1
represent the temperature of the rod at node xi, with d0(t) =
g0, dn+1 = gL and let d = (d1, ..., dn)′ ∈ Rn. We define
the following linear node shape function matrices for i =
0, ..., n+ 1:

Ni(x) =

{
x−xi−1

xi−xi−1
i > 0, x ∈ [xi−1, xi] ,

xi+1−x
xi+1−xi i < n+ 1, x ∈ [xi, xi+1] ,

(3)

which results in the following linear interpolation of the field
variable u in terms of its nodal values d:

ud(x, t) =

n+1∑
i=0

Ni(x)di(t) . (4)

Consider the subspaces Dh ⊂ D and V h ⊂ V of linear
interpolations defined above and time-invariant interpolations
respectively. It can be shown that ud(x, t) is a solution of the
weak formulation over the sets Dh and V h, where d evolves
according to the following linear system:

ΣHFEM (u0, g)

{
Mḋ+Kd = F (g) ,

di(0) = u0(xi), i = 1, ..., n .
(5)

In the above, M,K and F are the mass, stiffness and external
force matrices respectively, whose specific form depend on
the partition and the parameters of the PDE. In general, M
can be considered diagonal and K is a banded matrix, in
this specific PDE having bandwidth 3. In general, we will
denote a PDE by Σ(...) and we will call ΣFEM (...) the FEM
system corresponding to a PDE system Σ(...).

B. Signal Temporal Logic

A detailed definition of STL can be found in [5], so
we just provide here necessary notation and examples. An
STL formula φ is constructed from predicates over signals
s : R≥0 → R of the form µ ≡ µ(s) > 0, Boolean
operators ¬ (negation), ∧ (conjunction) and ∨ (disjunction),
and temporal operators U[a,b] (until between a and b), F[a,b]

(eventually between a and b, equivalent to >U[a,b]) and
G[a,b] (always between a and b, equivalent to ¬F[a,b]¬). We
write s[t] |= φ if signal s satisfies φ at time t and s |= φ
if s[0] |= φ. We also consider quantitative semantics given
by the robustness function r(φ, s, t), which gives a measure
of distance to satisfaction of a signal to a formula and
can be computed recursively using min and max operators.
The relationship between the two semantics is given by
s[t] |= φ ⇐⇒ r(φ, s, t) > 0.

As an example, consider the temperature at the end of a
rod to be s(t) = 2t, and the specification φ = G[1,2]s > 0.5.



We have s |= φ, since s(t) > 0.5,∀t ∈ [1, 2] and robustness
r(φ, s, 0) = 0.5 since mint∈[1,2](s(t)− 0.5) = 0.5.

III. SIGNAL TEMPORAL LOGIC FOR PDES

In order to define specifications over the trajectories of
PDEs, we extend regular STL using the following set of
predicates: let Λ be a set of predicates over a set Ω̄, where
each predicate λ ∈ Λ is defined as a tuple (Qλ, Xλ, µλ, Dλ),
and represented using the syntax Qλx ∈ Xλ : Dλu(x) −
µλ(x) > 0, where:

• Qλ ∈ {∀,∃} is the spatial quantifier,
• Xλ ⊆ Ω̄ is the spatial domain of the predicate and we

require it to be a closed set,
• µλ : Xλ → R is a continuous and differentiable

function representing the reference profile, and
• Dλ ∈ { d

i

dxi }i=0,1,... is a differential operator, with
d0

dx0 = id the identity.

We consider STL formulas with the usual syntax and
semantics over the set of predicates Λ, which we call Spatial-
STL (S-STL). The satisfaction of a predicate with respect
to a continuous-time signal u : Ω̄ × [0, T ] → R at time
t ∈ R is defined as u[t] |= λ ⇐⇒ Dλu(x, t) − µλ(x) >
0 for all x ∈ Xλ if Qλ = ∀ or for some x ∈ Xλ

otherwise. We define the quantitative semantics as before
with r(λ, u, t) = minx∈Xλ(Dλu(x, t) − µλ(x)) if Qλ = ∀
and r(λ, u, t) = maxx∈Xλ(Dλu(x, t) − µλ(x)) otherwise.
For convenience, we define syntactic sugar for predicates
with the opposite inequality using the following equivalence:
∀x ∈ X : Du(x) − µ ≤ 0 ≡ ¬∃x ∈ X : Du(x) − µ > 0,
and similarly for an existential predicate.

Example 1: Consider a metallic rod of 100 mm. The
temperature at one end of the rod is fixed at 300 K, while a
heat source is applied to the other end. The temperature of
the rod follows a heat equation similar to (1). We want the
temperature distribution of the rod to be within 3 K of the
linear profile µ(x) = x

4 + 300 at all times between 4 and 5
seconds in the section between 30 and 60 mm. Furthermore,
the temperature should never exceed 345 K at the point where
the heat source is applied (x = 100). We can formulate such
a specification using the following S-STL formula:

φex =G[4,5]

(
(∀x ∈ [30, 60] : u(x)− (

x

4
+ 303) < 0)∧

(∀x ∈ [30, 60] : u(x)− (
x

4
+ 297) > 0)

)
∧

G[0,5](∀x ∈ [100, 100] : u(x)− 345 < 0) .

(6)

Throughout this paper, we will use the notation S(...) |= ψ
to denote that the trajectory of system S (either a PDE system
or its corresponding FEM system) with initial value s0 and
boundary conditions g satisfies formula ψ (either in regular
STL or in S-STL).

IV. PROBLEM FORMULATION AND APPROACH

Let ∂Ω be the boundary of Ω. We consider ∂Ω to
be partitioned in four regions {∂Ωd, ∂Ωn, ∂ΩD, ∂ΩN}. Let
u(x, t) : Ω̄× [0, T )→ Rn be the state of a system evolving

according to the IBVP Σ(u0, gd, gn, vD, vN ):

Σ(...)



f(x, t, u,
∂u

∂t
,
∂u

∂xi
, ...) = 0, on Ω× (0, T ) ,

u(x, t) = gd(x, t),∀x ∈ ∂Ωd,∀t ∈ (0, T ) ,

∂u

∂n
(x, t) = gn(x, t),∀x ∈ ∂Ωn,∀t ∈ (0, T ) ,

u(x, t) = vD(x, t),∀x ∈ ∂ΩD,∀t ∈ (0, T ) ,

∂u

∂n
(x, t) = vN (x, t),∀x ∈ ∂ΩN ,∀t ∈ (0, T ) .

(7)

In the above, f is a function of space, time, state and all
state derivatives, n is the normal vector to ∂Ω, gd and gn are
the Dirichlet and Neumann prescribed boundary conditions
respectively, and vD and vN are the Dirichlet and Neumann
boundary control inputs respectively. We will use Σ to refer
to the system given by (7), including the partition of ∂Ω,
with unspecified initial value and boundary conditions.

Problem 1 (Boundary Control Synthesis Problem):
Given a PDE Σ, an initial value u0, prescribed boundary
conditions gd and gn, an S-STL formula ψ over a set
of predicates Λ, and admissible control sets VD and VN ,
synthesize control inputs vD ∈ VD and vN ∈ VN such that
the trajectory of Σ(u0, gd, gn, vD, vN ) satisfies ψ.

In the above formulation, the admissible control inputs are
given in their most general form as sets of allowed control
functions (note that from (7), vD : ∂ΩD × (0, T )→ Rn and
vN : ∂ΩN × (0, T ) → Rn). In practice, they are described
in terms of control inputs constraints, such as vD(x, t) <
100,∀x ∈ ∂ΩD,∀t ∈ (0, T ), as well as assumptions on the
form of the function, such as piecewise affine in t and x. We
also make the following assumptions: the function f in (7)
is linear, and only a finite number of derivatives of u appear;
and the sets VD and VN are described as polytopes in the
parameters of a linear parameterization of the control inputs.

We solve Problem 1 by reformulating it into a synthesis
problem for a discrete-time linear system instead. This is
done in three steps, described in Sec. V, by considering
the FEM approximation to the real solution, a spatial dis-
cretization and a temporal discretization. Then, we encode
the resulting linear system and specification in a MILP and
solve for the control inputs that maximize the robustness with
respect to the discretized specification, which is described in
Sec. VI. As a biproduct of our approach, we can formulate
and solve a verification problem where the objective is to
check the satisfaction of the system against the specification
for all admissible control inputs.

V. DISCRETIZATION OF STL FOR PDES

In this section we define a series of reformulations of an S-
STL formula over Λ such that satisfaction of each successive
reformulation guarantees that of the previous one. A diagram
showing the hierarchy of the reformulations is shown in
Fig. 1. The theory developed in this section is stated for
a general 1D PDE for ease of notation, although it applies
to higher dimensional PDEs with minimal changes.

We first reformulate the specification ψ so that we can
work with the approximation given by ΣFEM . Recall that



Fig. 1: Summary of our approach. The PDE model is dis-
cretized in three steps to obtain a set of difference equations.
The S-STL specification is rewritten following the same steps
so that satisfaction in the discretized model is preserved.

we denote as u(x, t) the trajectory of Σ1 and ud(x, t) the
piecewise linear approximation obtained by interpolating
the trajectory of ΣFEM . In the following, we assume the
partition {xi}mi=1 is proposition preserving with respect to
the set of regions {Xi}mi=1

2. Suppose we are given an a priori
bound, εi(x, t), for the pointwise difference between the ith
derivative of the trajectory and the FEM approximation, i.e.,
| ∂d

i

∂xiu(x, t)− ∂di

∂xiu
d(x, t)| ≤ εi(x, t).

Definition 1: Let λ ∈ Λ be a predicate and let δ :
Ω̄ → R be a continuous and differentiable function. The
perturbation of λ by δ, λδ , is the predicate given by the
tuple (Qλ, Xλ, µ

δ
λ, Dλ), where µδλ(x, u) = µλ(x, u) + δ(x).

Definition 2: Let ψ be an S-STL formula over Λ in
negation normal form and let δ = {δi}i=0,1,... be a set
of continuous functions δi : Ω̄ → R. The conservative
correction of ψ by δ, ψδ , is an S-STL formula in negation
normal form obtained by substituting every predicate λ that
appears in ψ in the following way:
• If λ is not preceded by a negation operator and Dλ =

di

dxi , then it is substituted by λδi .
• Otherwise, it is substituted by λ−δi

We will also use Λδ to refer to the set of all δ and −δ
corrections of predicates in Λ.

Theorem 1: If ud |= ψδ , with δi(x) = maxt εi(x, t), then
u |= ψ.

Proof: We only need to consider a predicate λ and its
negation. Let i be the order of the derivative Dλ. We have

| ∂
i

∂xi
u(x, t)− µλ(x)− ∂i

∂xi
ud(x, t) + µλ(x)| =

| ∂
i

∂xi
u(x, t)− ∂i

∂xi
ud(x, t)| ≤ δi(x) . (8)

Thus, ∂i

∂xiu(x, t) − µλ(x) ≥ ∂i

∂xiu
d(x, t) − µλ(x) − δi(x),

which proves the result for ψ = λ. For ψ = ¬λ, note
that satisfaction is equivalent to ∂i

∂xiu(x, t) − µλ(x) < 0
for x quantified opposite to Qλ. Finally, from (8) we have
∂i

∂xiu(x, t)− µλ(x) ≤ ∂i

∂xiu
d(x, t)− µλ(x) + δi(x).

Example 2: Assume we obtain a bound δ0(x) = 0.25 for
the system ΣH described in Ex. 1 and its FEM approxi-
mation. Consider the same specification φex defined in the

1In what follows we use Σ to refer to Σ(u0, gd, gn, vD, vN ).
2I.e., the Xi sets are unions of the regions defined by the partition. This

is well defined since the Xi sets are closed and there are a finite number
of them. In higher dimensions, we also require the Xi to be are polytopes.

example. The perturbed specification, φδex is then:

φδex =G[4,5]

(
(∀x ∈ [30, 60] : u(x)− (

x

4
+ 303− 0.25) < 0)∧

(∀x ∈ [30, 60] : u(x)− (
x

4
+ 297 + 0.25) > 0)

)
∧

G[0,5](∀x ∈ [100, 100] : u(x)− 345− 0.25 < 0) .
(9)

If the FEM approximation to ΣH satisfies φδex, we can
conclude ΣH satisfies φex.

Theorem 1 gives us a way to conservatively solve Prob-
lem 1 using the approximation obtained from ΣFEM . How-
ever, we still need to deal with continuous functions in
continuous time. Our next step will be to reformulate the
specification ψδ into an STL formula that can be checked
against the trajectory of ΣFEM , i.e., d(t).

Let ΛδFEM = {αλ,e|λ ∈ Λδ, e ∈ Eλ} ∪ {βλ,j |λ ∈ Λδ, j ∈
Jλ, Dλ = id}, where Eλ = {e|[xe, xe+1] ⊆ Xλ}, Jλ =
{j|xj ∈ Xλ, [xj−1, xj ] 6⊆ Xλ, [xj , xj+1] 6⊆ Xλ}, and
satisfaction of αλ,e and βλ,j by a continuous-time signal
d : [0, T ]→ Rn is defined in the following way:

d[t] |= αλ,e ⇐⇒ Dλu
d(xme , t)− µλ(xme ) > 0 , (10)

d[t] |= βλ,j ⇐⇒ dj(t)− µλ(xj) > 0 , (11)

where xme = xe+xe+1

2 is the midpoint of element e. Note
that Dλu

d(xme , t) is a function of d(t). The α predicates
simplify a predicate λ so that only a representative value
(the midpoint) is checked at each element. The β predicates
are needed in those cases where Xλ is a single point. The
robustness degree for these predicates is defined as in Sec. II-
B. Note that this set of predicates includes the perturbations
defined in Def. 2. We define perturbations of predicates in
ΛδFEM by a real number k in a manner analogous to Def. 1,
and we denote it as αk.

Definition 3: The STL formula over ΛδFEM , ψδ,ηFEM , cor-
responding to an S-STL formula in negation normal form,
ψδ , over Λδ , with η = {ηi}i=0,1,..., ηi : Ω̄ → R, is a
formula obtained by substituting every predicate λ in ψδ

by the formula
⊕

e∈Eλ γλ,e ⊕
⊕

j∈Jλ βλ,j , where ⊕ = ∧ if
Qi = ∀ and ⊕ = ∨ otherwise, and γλ,e is defined as the
following STL formula:
• If λ is not preceded by a negation operator, then γλ,e =

α
−kλe
λ,e .

• Otherwise, γλ,e = α
kλe
λ,e.

In both cases, for Dλ = di

dxi and le = xe+1 − xe,

kλe =
le
2

(
max

c∈[xe,xe+1]
|µ′λ(c)|+ max

c∈[xe,xe+1]
ηi(c)

)
. (12)

Theorem 2: If d |= ψδ,ηFEM , with ηi(x) ≥
maxt |∂

i+1ud

∂xi+1 (x, t)|, then ud |= ψδ .
Proof: We only need to consider a predicate λ and its

negation. We assume Qλ = ∀, the other case is similar. Let
Xλ = [xa, xb] and i be the order of the derivative Dλ. First
note that satisfying λ is equivalent to satisfying all predicates
of the set {(Qλ, [xe, xe+1], µλ, Dλ)|e ∈ Eλ}. For any e ∈



Eλ, let xm = xe+xe+1

2 , h = xe+1−xe
2 . For x ∈ [xe, xe+1] we

have:

| ∂
i

∂xi
ud(x, t)− µλ(x)− ∂i

∂xi
ud(xm, t) + µλ(xm)| ≤

h max
c∈[xe,xe+1]

|µ′λ(c) +
∂i+1ud

∂xi+1
(c, t)| ≤

h

(
max

c∈[xe,xe+1]
|µ′λ(c)|+ max

c∈[xe,xe+1]
|∂
i+1ud

∂xi+1
(c, t)|

)
≤

h

(
max

c∈[xe,xe+1]
|µ′λ(c)|+ max

c∈[xe,xe+1]
ηi(c)

)
= Ke .

(13)

Then,

∂i

∂xi
ud(x, t)− µλ(x) ≥ ∂i

∂xi
ud(xm, t)− µλ(xm)−Ke =

Dλu
d(xm, t)− µλ(xm)−Ke , (14)

so d |= α−Keλ,e implies ud |= (Qλ, [xe, xe+1], µλ, Dλ) and
the theorem holds for ψδ = λ. To prove it for the negated
predicate, we can follow an argument similar to the one in
the proof of Thm. 1.

Example 3: Continuing with Ex. 2, assume we obtained
the FEM approximation using the partition {10i|i ∈
0, ..., 10} and we found the bound η0(x) = 0.15. The
perturbed STL specification corresponding to ψδ is

φδ,ηex,FEM = G[4,5]

(
(y4 − 311.75− 0.25− 5 ∗ (0.25 + 0.15) < 0)∧
(y5 − 314.25− 0.25− 5 ∗ (0.25 + 0.15) < 0)∧
(y6 − 316.75− 0.25− 5 ∗ (0.25 + 0.15) < 0)∧
(y4 − 305.75− 0.25− 5 ∗ (0.25 + 0.15) > 0)∧
(y5 − 308.25− 0.25− 5 ∗ (0.25 + 0.15) > 0)∧
(y6 − 310.75− 0.25− 5 ∗ (0.25 + 0.15) > 0)

)
∧

G[0,5]

(
d11 − 345 < 0

)
, (15)

where ye = ud(xme ) = de+de+1

2 . If we prove satisfaction
of φδ,ηex,FEM by ΣHFEM , we can conclude the interpolation
satisfies φδex.

Finally, we reformulate the specification into an STL
formula with discrete time semantics that can be checked
against the trajectory of a time discretization of ΣFEM with
time interval ∆t ∈ R>0. There are several options at this
point: the simplest one is to consider ΣFEM as a first order
linear system (augmenting the state space if needed) and
define the time discretization as the following difference
equation:

Σ∆t
FEM (d(0), g)

{
d̃k+1 = Ãd̃k + b̃(g) ,

d̃0 = d(0) ,
(16)

where Ã = eA∆t and b̃(g) = −eA∆tA−1(e−A∆t − I)b(g).
Note that, in theory, d(k∆t) = d̃k,∀k ∈ N. However, in
practice one needs to numerically compute the exponential
matrices in Ã and b̃, which introduces an approximation error
difficult to control. As an alternative, we can use any numer-
ical integration algorithm with fixed time step appropriate

to the specific PDE system under study, several of which
have been thoroughly analyzed in the FEM literature, such
as the Newmark family. Similar to the FEM approximation,
assume we have a bound on the approximation error of the
integration algorithm, maxk |dj(k∆t)−d̃kj | ≤ εdj , i = 1, 2, ....

We define a conservative correction of ψδ,ηFEM by a real
vector ν = (νy, νd), ψδ,η,νFEM , in a similar way to Def. 3, not-
ing that, for Dλ = ∂i

∂xi , the predicate γλ,e is perturbed using
the constant lyi,e = ∆tνyi,e and the predicate βλ,j is perturbed
using the constant ldj = ∆tνdj . We abuse the notation for STL
formulas so that we can consider satisfaction of the discrete
time signal d̃. In particular, d̃[t] |= µ ⇐⇒ µ(d̃bt/∆tc) > 0.

Theorem 3: If d̃ |= ψδ,η,νFEM , with νdj ≥ maxt |ḋj(t)| + εdj
and νyi,e ≥ maxt | ddtD

iud(xme , t)| + Diuε
d

(xme ), then d |=
ψδ,ηFEM .

Proof: Similar to Thm. 2.
Example 4: Continuing with Ex. 3, assume we discretize

ΣHFEM (u0, g) with perfect accuracy using the timestep ∆t =
0.005 and let ν = (0.5, 0.5, ...). The final corrected specifi-
cation is

φδ,η,νex,FEM = G[4,5]

(
(y4− 311.75− 0.25− 5 ∗ (0.25 + 0.15) + 0.5 ∗ 0.005 < 0)∧
(y5− 314.25− 0.25− 5 ∗ (0.25 + 0.15) + 0.5 ∗ 0.005 < 0)∧
(y6− 316.75− 0.25− 5 ∗ (0.25 + 0.15) + 0.5 ∗ 0.005 < 0)∧
(y4− 305.75− 0.25− 5 ∗ (0.25 + 0.15) + 0.5 ∗ 0.005 > 0)∧
(y5− 308.25− 0.25− 5 ∗ (0.25 + 0.15) + 0.5 ∗ 0.005 > 0)∧
(y6−310.75−0.25−5∗ (0.25 + 0.15) + 0.5∗0.005 > 0)

)
∧

G[0,5]

(
d11 − 345 + 0.5 ∗ 0.005 < 0

)
, (17)

We can guarantee the satisfaction of φδ,ηex,FEM by ΣHFEM if
ΣH,∆tFEM satisfies φδ,η,νex,FEM .

The main result in this work is a corollary of the previous
theorems, which allows us to solve Problem 1 by solving a
control problem for discrete-time linear systems with regular
STL constraints.

Theorem 4: If Σ∆t
FEM |= ψδ,η,νFEM , with δ, η and ν defined

as in Thms. 1 to 3 and d0
i = u0(xi), i = 1, ..., n, with u0 an

initial value for Σ, then Σ |= ψ.
We can also obtain a bound for the robustness of the

trajectory of Σ with respect to the original specification by
making the following observation:

Theorem 5: If u, ud, d and d̃ are trajectories of Σ, inter-
polation of ΣFEM , ΣFEM and Σ∆t

FEM , respectively, and ψ
is an S-STL formula over Λ, then the following inequality
holds:

r(ψ, u, t) ≥ r(ψδ, ud, t) ≥ r(ψδ,ηFEM , d, t) ≥ r(ψ
δ,η,ν
FEM , d̃, t) .

(18)
Proof: It follows from the proofs of Thms. 1 to 3.

VI. MILP FORMULATION OF CONTROL SYNTHESIS

In this section, we solve Problem 1 by formulating an
optimization problem using the corrected STL specification
defined in the previous section. Our formulation is equivalent



to an MILP, which we solve using an off-the-shelf solver
such as Gurobi [13]. The optimization problem takes the
following form:

rm = max r(ψδ,η,νFEM , d̃, 0)

s.t. (16), vD ∈ VD, vN ∈ VN .
(19)

In the above, (16) should be substituted by the appropriate
difference equations resulting from the chosen ODE inte-
gration algorithm. After solving (19), if rm > 0, then ψ is
satisfied by the controlled system using as control inputs the
optimal solution for vD and vN . This optimization problem
is clearly non-convex, due to the max and min operators
present in the definition of robustness, and the objective
function is non-differentiable. However, we can apply the
technique described in [14] to represent robustness as mixed-
integer linear constraints. On the other hand, the system
dynamics are linear and our assumption on the shape of the
admissible control sets VD and VN implies that they can be
encoded as linear constraints. Therefore, (19) is a MILP. Also
note that by using the robustness degree as cost function,
(19) is always feasible and a control input will be produced
even if it does not correspond to a satisfying trajectory. In
this case, rm would be negative and we can think of the
resulting optimal values for vD and vN as best effort inputs.

The computational time needed to solve a MILP grows
exponentially with the number of binary variables. In our
encoding, we introduce one binary variable for each argu-
ment to a min or max function. Thus, the number of binary
variables is proportional to the length of time intervals (in
the discrete sense), the number of boolean connectives in
the original formula ψ and the length of the discretized
predicates obtained in Def. 3. In terms of parameters of
the problem and solution, the length of the discrete-time
intervals is proportional to the length of the time intervals
in ψ and inversely proportional to ∆t; regarding the spatial
discretization of the predicates, its length is proportional to
the size of the spatial domains and inversely proportional to
the size of the partition (i.e., the distance between two nodes
in the partition).

VII. EXAMPLES

In this section we solve some instances of Problem 1
for a heat equation as well as an elastic wave propagation
system and discuss the conservativeness of our approach as
well as the computational performance. We implemented our
framework using Python 2.7 and Gurobi 7.0 as our MILP
solver. We ran our implementation in an Intel Core i7 at
2.4GHz and 16GB RAM.

A. Heat Equation

We start by solving a control synthesis problem for the
system and specification described in Ex. 1. We assume
the rod is made of two different materials: the section
from 30 to 60 mm is made of a material with parameters
Ea = 1500 · 103, ρa = 4.5 · 10−6 and ca = 0.38 · 109, while
the rest of the rod is made of a material with parameters
Eb = 800 · 103, ρb = 4 · 10−6 and cb = 0.466 · 109. The

applied heat source appears in (5) as an additional force
in the right hand side, fnodal(t) = (0, ..., 0, U(t))T , with
U(t) constrained to be continuous, piecewise linear and
U(t) ∈ [0, 106],∀t. We predefine the interpolation times for
U(t) to {0.5i|i = 0, 1, ...}. The rod starts at temperature
300 K at all points. We partition the spatial domain into a
uniform mesh of different sizes and integrate the resulting
FEM system using the trapezoidal rule with ∆t = 0.05.
For simplicity, we do not consider the integration error, and
we approximate the ε, η, ν bounds by taking 100 samples
of system trajectories with randomized control inputs, ob-
taining from them approximate maximum spatial and time
derivatives, and also the maximum approximation error when
considering the true system trajectory the one obtained from
an FEM model with 200 elements and ∆t = 0.005. This
process is automatic and takes less than 20 seconds.

We used a 30 element mesh to synthesize a control input
from the specification φex, which produces a trajectory with
robustness r(φex) ≥ 0.66. The control input and snapshots
of the temperature evolution are shown in Fig. 2, along
with the temperature profiles considered in φex (labeled
A, B and C in the order they appear in the formula) and
a visualization of the total correction applied during the
discretization steps. It took 6 seconds to solve the resulting
MILP with 13741 variables, 664 of them binary, and 14386
constraints. Furthermore, we show in Fig. 2d the relationship
between the number of elements of the FEM partition and
the conservativeness and computational complexity of the
method. Note that for a 10 element mesh, the method fails
to obtain a (provably) satisfying control input, and as quality
of the mesh improves, so does the bound on the robustness.

B. Elastic Wave Propagation

Consider a steel and brass rod of length L = 100 m, the
section between 30 m and 60 m being brass, with densities
ρst = 8 · 103 kg/m3, ρbr = 8.5 · 103 kg/m3 and Young’s
modulus Est = 200 GPa, Ebr = 100 GPa, with one end
fixed and a time-variant force U(t) applied to the other end.
Assume the rod is initially at rest. The displacement u(x, t)
of the rod obeys the following IBVP:

ΣM (0, U)



ρ
∂2u

∂t2
− E∂

2u

∂x2
= 0, on Ω× (0, T ) ,

u(0, t) = 0, ∀t ∈ (0, T ) ,

E
∂u

∂x
(L, t) = U(t), ∀t ∈ (0, T ) ,

u(x, 0) = 0, ∀x ∈ Ω ,

∂u

∂t
(x, 0) = 0, ∀x ∈ Ω .

(20)

Note that in this mixed material case, ρ = ρ(x) and E =
E(x) are the density and Young’s modulus of the rod at
each point. We build an FEM approximation using a uniform
partition with 20 elements and integrate the resulting second
order system using the trapezoidal rule [1] to obtain a time
discretization with time interval ∆t = 5 · 10−3 s. We obtain
approximate bounds for ε, η, ν as in Sec. VII-A.



(a) Snapshot at t = 0.0. (b) Snapshot at t = 4.5.

(c) Inputs for φex. (d) Influence of mesh quality.

Fig. 2: In Figs. 2a and 2b we show snapshots of the satisfying
trajectory for φex in black, with predicate profiles and their
corrections in solid and dashed lines respectively, except for
the C profile, which is shown as a single dash and dot.
In Fig. 2c we show the synthesized input. In Fig. 2d, we
show the computing time (in black bars) and lower bound
of the robustness (in red dots) as we increase the number of
elements in the mesh.

We formulate a control synthesis problem where U(t) is a
Neumann control input constrained to be continuous, piece-
wise affine and U(t) ∈ [−5000 N, 5000 N],∀t. Throughout
this section, we predefine the interpolation times for U(t) to
{0.1i|i = 0, 1, ...}. First, we formulate a specification where
we require that the rod must be stretched over a given profile
for a period of time, then compressed for at least one instant
in a given interval, then a choice is given between holding
the compressed pattern or returning to the stretched one,
and finally the stretched pattern must be achieved within
a time interval. Requirements where a material must be
stretched or compressed following a profile are important
in manufacturing processes such as forming. The resulting
S-STL formula is the following:

φ1 =G[0.1,0.3](∀x ∈ [60, 90] : u(x)− µB > 0)∧
F[0.3,0.4](∀x ∈ [60, 90] : u(x)− µC < 0)∧(
G[0.45,0.5](∀x ∈ [60, 90] : u(x)− µC < 0)∨
G[0.45,0.5](∀x ∈ [60, 90] : u(x)− µB > 0)

)
∧

F[0.5,0.55](∀x ∈ [60, 90] : u(x)− µB > 0) ,

(21)

where µB = 0.005x · 10−3 + 0.3 and µC = 0. The specific
form of the target profiles was selected considering the
feasible shape changes the rod can achieve. The resulting
U(t) is shown in Fig. 3b, which corresponds to a trajectory
with a robustness degree of at least 0.0003. We show a
snapshot of the trajectory in Fig. 3a. It took 136 seconds
to solve the MILP, which has 14604 variables, 730 of them
binary, and 16035 constraints.

Finally, we consider a specification involving the strain,

(a) Snapshot at t = 0.5. (b) Input for φ1.

Fig. 3: Snapshot of the satisfying trajectory for φ1 and
synthesized control inputs. Trajectory is shown in black,
predicate profiles in solid colored lines and corresponding
corrected profiles in dashed lines.

(a) Snapshot at t = 0.48. (b) Input for φ2.

Fig. 4: Snapshot of the satisfying trajectory for φ2 and
synthesized control inputs. Trajectory is shown in black,
predicate profiles in solid colored lines and corresponding
corrected profiles in dashed lines.

d
dxu, of the system, where the objective is to keep the strain
in the brass section under a safe profile for some time, and
then increase it so that the material yields or breaks within a
time window. For this example we predefine U(0) = 0. The
corresponding S-STL formula is the following:

φ2 =G[0.1,0.4]

(
∀x ∈ [30, 60] :

d

dx
u(x)− µA < 0

)
∧

F[0.4,0.5]

(
∀x ∈ [30, 60] :

d

dx
u(x)− µC > 0

)
,

(22)

where µA = 2 · 10−5, µC = 3 · 10−5. The control input
obtained is shown in Fig. 4b. It corresponds to a trajectory
with 1.26 · 10−6 robustness and it was synthesized in 6
seconds. We show a snapshot of the trajectory in Fig. 4a.

C. 2D Beam

We consider now a 2D beam of length L = 16 m, width
c = 1 m, Young’s modulus E = 1 · 107 and Poisson’s
ratio v = 0.3, initially at rest, assuming no body force
and following a 2D linear isotropic elasticity theory with
boundary conditions given for all t as follows:

u1(0, y) = u2(0, y) = 0, y ∈ [0, c] ,

h(x, y) = (0, 0), x ∈ (0, L), y ∈ [0, c] ,

h2(L, y) = 0, y ∈ [0, c] ,

h1(L, y) =
y − .25

.25
U, y ∈ [.25, .45] ,

h1(L, y) =
(
1− y − .45

.25

)
U, y ∈ [.45, .75] ,

(23)



(a) Snapshot at t = 0.0. (b) Snapshot at t = 3.45.

(c) Snapshot at t = 4.05. (d) Input for φ.

Fig. 5: Snapshots of the satisfying trajectory for φ and
synthesized input. The trajectory is shown as the deformation
of the domain, represented in black by the mesh used in the
FEM. The predicate profiles are shown in colored lines.

where U = U(t) is the compressive force applied at the
free end of the beam and h is the traction. The boundary
conditions specify that the left end of the beam is fixed and
a force is applied to the right end, distributed so that the
maximum force is applied at y = 0.45 m, decaying linearly
until y = 0.25 m and y = 0.75 m.

We want to synthesize an input force such that the beam
buckles. For this specific setup, we only need to specify the
vertical displacement profile in part of the bottom boundary.
We formulate the following S-STL specification:

φ = G[3.45,4.05](A ∧B) ,

A = ∀x ∈ {x ∈ Ω|8 ≤ x1 ≤ 14, x2 = 0}(u2(x) > µA(x)) ,

B = ∀x ∈ {x ∈ Ω|8 ≤ x1 ≤ 14, x2 = 0}(u2(x) < µB(x)) ,
(24)

where µA and µB are the quadratic functions depicted in
Fig. 5a (labeled A and B). The specification states that the
vertical displacement at part of the bottom boundary must
be within the two given profiles at all times between 3.45 s
and 4.05 s. Note that a specification defining the shape of a
material such as this one can be automatically constructed
from a target shape plus a maximum allowed deviation.

We used a regular 8x4 9-node quadratic element mesh and
integrated the second order system using the trapezoidal rule
with ∆t = 75 ms. The synthesized U(t) is shown in Fig. 5d
and corresponds to a trajectory with a robustness degree of
at least 13. We show snapshots of the evolution of the beam
shape in Fig. 5. It took 5546 seconds to solve the problem.

VIII. CONCLUSION

In this paper, we formulated and solved a boundary control
synthesis problem for systems governed by a PDE with
specifications given in an extension to STL. Our solution
relies on the approximation of the PDE using the FEM,
which reduces the problem to the control synthesis of a

discrete-time linear system under regular STL constraints.
The reformulation requires correcting the predicates in the
formula using the FEM approximation errors, as well as the
derivatives of the approximated solution and the predicate
functions, to account for approximation and discretization
errors. Finally, the resulting control problem is encoded as a
MILP, which we show can be solved in minutes in several
1D and 2D examples. The method can be trivially adapted
to solve verification problems as well.

Two key issues should be addressed in future work. First,
the error and derivative bounds should be obtained in a
systematic and formally correct way. Second, we have found
the approach to be too conservative when using low quality
meshes, while higher quality meshes prohibitively increase
the size of the MILP, specially in 2D examples. Thus, the
scalability of our method should be studied further.
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