A Decision Tree Approach to Data Classification using
Signal Temporal Logic

Giuseppe Bombara
Boston University
Boston, MA, USA

gbombara@bu.edu

Hirotoshi Yasuoka
DENSO CORPORATION
Kariya, Aichi, Japan

Cristian-loan Vasile
Boston University
Boston, MA, USA

cvasile@bu.edu

Francisco Penedo
Boston University
Boston, MA, USA
franp@bu.edu

Calin Belta
Boston University
Boston, MA, USA

hirotoshi_yasuoka@denso.co.jp cbelta@bu.edu

ABSTRACT

This paper introduces a framework for inference of timed
temporal logic properties from data. The dataset is given as
a finite set of pairs of finite-time system traces and labels,
where the labels indicate whether the traces exhibit some
desired behavior (e.g. a ship traveling along a safe route).
We propose a decision-tree based approach for learning sig-
nal temporal logic classifiers. The method produces binary
decision trees that represent the inferred formulae. Each
node of the tree contains a test associated with the satisfac-
tion of a simple formula, optimally tuned from a predefined
finite set of primitives. Optimality is assessed using heuris-
tic impurity measures, which capture how well the current
primitive splits the data with respect to the traces’ labels.
We propose extensions of the usual impurity measures from
machine learning literature to handle classification of sys-
tem traces by leveraging upon the robustness degree concept.
The proposed incremental construction procedure greatly
improves the execution time and the accuracy compared to
existing algorithms. We present two case studies that il-
lustrate the usefulness and the computational advantages of
the algorithms. The first is an anomaly detection problem
in a maritime environment. The second is a fault detection
problem in an automotive powertrain system.

Categories and Subject Descriptors

F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Temporal logic; 1.2.6 [Artificial In-
telligence]: Learning; 1.5.2 [Pattern Recognition|: De-
sign Methodology—Classifier design and evaluation

Keywords

Signal Temporal Logic; Logic Inference; Decision Trees; Im-
purity Measure; Machine Learning; Anomaly Detection; Su-
pervised Learning;

1. INTRODUCTION

Machine learning deals with the construction of algorithms
that can learn from data. Such algorithms operate by build-
ing a classifier from examples, called training data, in order
to make accurate predictions on new data [23]. One of the
main problems in machine learning is the so called two-class
classification problem. In this setting, the goal is to build a
classifier that can distinguish objects belonging to one of two
possible classes. This problem is of fundamental importance
because its solution leads to solving the more general multi-
class problem [23]. Furthermore, it can be directly used in
the context of anomaly detection, where the objective is to
find patterns in data that do not conform to the expected be-
havior. These non-conforming patterns are often referred to
as anomalies or negatives, whereas the normal working con-
ditions are usually referred to as targets or positives. Given
the importance of this problem and its broad applicability,
it has been the topic of several surveys [15] |6].

A specific formulation of the two-class problem is determined
by several factors such as the nature of the input data, the
availability of labels, as well as the constraints and require-
ments determined by the application domain [6]. In this
paper, we deal with data in form of finite time series, called
signals or traces, and we suppose that the labels of these
traces are available. That is, the true class of each trace
is known, either positive or negative, and this information is
exploited during the classifier construction phase (supervised
learning). We tackle the two-class classification problem by
bringing together concepts and tools from formal methods
and machine learning. Our thesis is that a formal speci-
fication of the normal working conditions can be gleaned
directly from execution traces and expressed in the form
of Signal Temporal Logic (STL) formulae, a specification
language used in the field of formal methods to define the
behavior of continuous systems [21]. The inferred formulae
can then be applied directly as data classifiers for new traces.
In this context, some work has been initially done to opti-
mize the parameters of a formula for a given, fixed, formula
structure (16} [1; 24]. Kong et. al. [19}|17] were the first to
propose an algorithm to learn both the formula structure and
its parameters from data and called this approach temporal
logic inference (TLI). This approach, while retaining many
qualities of traditional classifiers, presents several additional
advantages. First, STL formulae have precise meaning and

allow for a rich specification of the normal behaviour that
is easily interpretable by humans. Second, anomaly detec-
tion methods commonly applied to time series data are often
model-based, i.e. they require a good model of the system
running alongside the physical system . Third, classical
machine learning methods are often over specific to the task.
That is, they focus exclusively on solving the classification
problem but offer no other insight on the system where they
have been applied. On the contrary, TLI fits naturally as
a step in the system’s design workflow and its analysis and
results can be employed in other phases.

In this paper, we propose a novel, decision-tree based frame-
work for solving the two-class classification problem involv-
ing signals using STL formulae as data classifiers. We refer
to it as framework because we are not just proposing a sin-
gle algorithm but a class of algorithms. Every algorithm
produces a binary decision tree which can be translated to
an STL formula and used for classification purposes. Each
node of a tree is associated with a simple formula, chosen
from a finite set of primitives. Nodes are created by find-
ing the best primitive, along with its optimal parameters,
within a greedy growing procedure. The optimality at each
step is assessed using impurity measures, which capture how
well a primitive splits the signals in the training data. The
impurity measures described in this paper are modified ver-
sions of the usual impurity measures to handle signals, and
were obtained by exploiting the robustness degree concept
@]. Our novel framework presents several advantages. In
particular, the proposed incremental construction procedure
requires the optimization of a small and fixed number of
primitives at each node. Moreover, the number of objects
to be processed decreases at each iteration. These two fea-
tures greatly improve the execution time and the accuracy
compared to the algorithms proposed in .

This paper is organized as follows. In Section [2] we briefly
survey some previous research efforts related to learning
temporal logic formulae. In Section |3} we review the def-
inition of Signal Temporal Logic, and its parameterized ver-
sion PSTL used in the rest of the paper. The classification
problem is formally stated in Section EI, and our decision
tree framework is presented in detail in Section[5] Two case
studies are introduced in Section [f] In Section [7] we report
and discuss the results obtained by applying our temporal
logic inference algorithms. We conclude in Section |8 with a
summary and an outlook to future research directions.

2. RELATED WORK

Most of the recent research on temporal logical inference has
focused on mining only the values of parameters associated
with a given temporal logic formula structure .
That is, a designer provides a formula template such as “The
engine speed settles below v m/s within 7 second” and an
optimization procedure finds values for v and 7. The given
structure reflects the (substantial) domain knowledge of the
designer on the system and its properties of interest to be
queried. With this approach, it is not possible to acquire
new knowledge about the system directly from data, since
it requires the designer to be very specific about the form of
system properties that are investigated.

In , the authors proposed methods for inferring both

the formula structure and its parameters from data. They
defined a fragment of STL, called inference parametric sig-
nal temporal logic (iPSTL), and showed that this fragment
admits a partial order among formulae (1) in the sense of
language inclusion, and (2) with respect to the robustness
degree. This implies that iPSTL formulae can be organized
in an infinite directed acyclic graph (DAG) according to how
general they are (for any valuation). This result enabled
them to formulate the classification problem as an optimiza-
tion problem, whose objective function involves the robust-
ness degree, and solve it in two cyclic steps: first, optimize
the formula structure by exploring the DAG, pruning and
growing it, and then, optimize the formula parameters, for
a fixed structure, using a nonlinear optimization algorithm.
This approach presents two major limitations. First, the pa-
rameter optimization routine has high computational cost.
This is mostly due to its nonlinear nature. Finding the op-
timal valuation becomes more and more challenging as the
algorithm proceeds, because the dimension of the parameter
space grows at each iteration. This leads to long execution
times. On the contrary, in our algorithm the dimension of
the parameter space is fixed. Second, the DAG is built us-
ing an ordering on the language accepted by PSTL formulae.
This has adverse effects on the performance. In particular,
even though changing the formula structure according to the
DAG offers guarantees in terms of the language, it does not
imply an improvement in terms of the misclassification rate,
which is the metric of interest for a classification problem.
In Sec. [7] we show through a case study that our approach
is able to obtain 20 times better classification performance
with respect to the results in [18].

Recently, also tackled the two-class classification prob-
lem for inferring temporal logic formulae. Their approach
can be divided in two separate steps. First, they build two
generative models, one for each class. The models have to
be in the form of stochastic systems and are used to com-
pute the probability of satisfaction of a formula. Second,
a discriminative formula is obtained by searching a formula
that maximizes the odds of being true for the first model
and false for the other model. As with other approaches,
the formula structure and parameters are optimized sepa-
rately. In particular, the formula structure is constructed
through heuristics, whereas the parameter space is explored
through statistical model checking. This approach present
some disadvantages. Primarily, it needs to build models of
the system under analysis. This requires a domain expert
and a certain amount of data. We do not agree with the
authors’ statement that model-based methods require less
data than direct methods. On the contrary, we believe that
more or the same amount of data is needed for the model
parameter selection and the model validation. Overall, in
the case studies reported, a significant designer intervention
was required to guide the procedure to obtain a satisfactory
formula. As opposed, our method does not need a model of
the system nor an expert to guide the learning process.

To conclude, used a learning procedure for formulae
defined in particular spatial superposition logics. These log-
ics were developed for describing patterns in images without
a time component. In particular, every image is represented
with a multi-resolution format using a fixed height quad-
tree data structure (which should not be confused with a

decision tree). In this representation, every node contains
an attribute describing an area of the image. Nodes that
appear at deeper levels provide information about smaller
areas. A pattern in an image corresponds to a path [12]
or a combination of several paths in the relative quad-
tree. Therefore, to describe the patterns, the semantics of
these spatial logics are defined over the paths of quad-trees.
In these works, formulae are learned from a labeled set of
paths or a labeled set of quad-trees by applying off-
the-shelf rule-based learning algorithms to the attributes of
the nodes.

3. SIGNAL TEMPORAL LOGIC

Let R be the set of real numbers. For ¢t € R, we denote
the interval [t,00) by R>;. We use § = {s : Ry — R"}
with n € N to denote the set of all continuous parameter-
ized curves in the n-dimensional Euclidean space R"™. In this
paper, an element of S is called a signal and its parameter
is interpreted as time. Given a signal s € S, the components
of s are denoted by s;, i € {1,...,n}. The set F contains
the projection operators from a signal s to one of its com-
ponents s;, specifically F = {f; : R" — R, fi(s) = si,i =
{1,..., n}} The suffiz at time t > 0 of a signal is denoted
by s[t] € S and it represents the signal s shifted forward in
time by ¢ time units, i.e. s[t](7) = s(7 +t) for all T € R>o.

The syntax of Signal Temporal Logic (STL) |21] is defined
as follows:

¢ =T | Praay<u | 70 | 1 A da | d1ldjapyd2

where T is the Boolean true constant; ps)<, is a predicate
over R"™ defined by the function f € F and p € R of the
form pyy<p(x) = f(x) < p; - and A are the Boolean op-
erators negation and conjunction; and U, 1) is the bounded
temporal operator until. We use 1 to denote the Boolean
false constant.

The semantics of STL is defined over signals in S recursively

as follows :

sftlET s T

s{t] |:pf(1)<u & (f(s(t) < p)

slt] = - & (sl = ¢)

slt] = (¢1 Ng2) & (slt] = ¢1) A (s[t] = ¢2)

s[t] = (0llpa,pyd2) < Ttu € [t+a,t+b) s.t. (s[tu] = ¢2)

A (v € [t 1) sl = é1)

A signal s € S is said to satisfy an STL formula ¢ if and
only if s[0] = ¢. We extend the type of allowed inequality
predicates in STL to st] = praysy = S[t] E Dr@)<pu-
Thus, predicates are defined in this paper by a function f €
F, a real number p € R and an order relation ~€ {<,>}.
The other Boolean operations (i.e., disjunction, implication,
equivalence) are defined in the usual way. Also, the temporal
operators eventually and globally are defined as F, 3¢ =
TUapy¢ and Gq,p)¢ = —F[4,1) 79, respectively.

In addition to Boolean semantics defined above, STL ad-
mits quantitative semantics [EI, , which is formalized by
the notion of robustness degree. The robustness degree of a
signal s € § with respect to an STL formula ¢ at time ¢t is

a function r(s, ¢,t) and is recursively defined as

r(s, T,t) =r,

(s, Pr@y<pst) = p— f(s(t)

T(S7_‘¢7t) = —T(S,¢,t)

T(S7¢1 /\¢27) = min{r(s>¢17t)7r(57¢27t)}
(s, 1ljapyP2,t) =

sup {mln {T(S,¢2,tu), inf {T(87¢17t1)}}}
ty €[t+a,t+b) t1€[t,tu)

where b > a > 0 and r € R>oU{oo} is a large constant rep-
resenting the maximum value of the robustness. Note that a
positive robustness degree (s, ¢, 0) of a signal s with respect
to a formula ¢ implies that s satisfies ¢ (in Boolean seman-
tics). In the following, we denote by r(s,) the robustness
degree r(s,¢,0) at time 0. Robustness can be extended to
the derived predicates and operators as follows:

(8, Pf(a)>u»t) = f(s(t)) — n

r(s,¢1V d2,t) = max{r(s, ¢1,t),7(s, p2,t)}

T(S7F[a,b)¢7 t) = sup {T(S,(ﬁ, tf)}
ty€[t+a,t+b)

(s, Gla,p) P, 1) = inf {r(s,¢,tq)}

tg€ft+a,t+b)

Moreover, the interpretation of robustness degree as a quan-
titative measure of satisfaction is justified by the following
proposition from .

ProPOSITION 3.1. Let s € S be a signal and ¢ an STL
formula such that r(s,¢) > 0. All signals s’ € S such that
ls = s'|l, <7(s,¢) satisfy the formula ¢, i.e. s |= ¢.

Parametric Signal Temporal Logic (PSTL) was introduced
in as an extension of STL, where formulae are param-
eterized. A PSTL formula is similar to an STL formula,
however all the time bounds in the time intervals associ-
ated with temporal operators and all the constants in the
inequality predicates are replaced by free parameters. The
two types of parameters are called time and space param-
eters, respectively. Specifically, let ¥ be a PSTL formula
and np, and nrr be the number of predicates and temporal
operators contained in 1), respectively. The parameter space
of ¢ is © =11 x T, where II C R"? is set of all possible space
parameters and T' = Ty X ...T,,, is the set of all time
parameters, where T; = {(as:,b;) € R2>0 | ai < b;} for all
i€ {1,...,n7r}. Conversely, if ¢ is a PSTL formula, then
every parameter assignment 6 € © induces a corresponding
STL formula ¢g, where all the space and time parameters
of 1 have been fixed according to 6. This assignment is
also referred to as a valuation 6 of . For example, given
Y = Gigp(s1 < ¢) and § = [2.5,0,1], we obtain the STL
formula ¢g = Gp,1y(s1 < 2.5).

4. PROBLEM FORMULATION

We wish to find an STL formula that separates traces pro-
duced by a system that exhibit some desired property, such
as behaving normally, from other traces of the same system.
Formally, let C' = {C}, Cy} be the set of classes, with C), for
the positive class and C), for the negative class. Let s be
an n-dimensional signal, s : R>o — R", and let I* € C be
its label. We consider the following problem:

PROBLEM 4.1 (Two0-CLASS CLASSIFICATION). Given a
set of labeled signals {(s,1%) N ., wherel' = C, if s* exhibits
a desired behavior, and I' = C,, if s° does not, find an STL
formula ¢ such that the misclassification rate MCR(¢) is
minimized, where the misclassification rate is defined as:

_ s I el = V(s oAl =Gy}

MCR(¢) : i

In the above formula, |-| denotes the cardinality of a set,
and (s = ¢ AI* = () represents a false positive, while
(s B ¢ AN1' = Cp) represents a false negative.

5. LEARNING DECISION TREES

In our approach, the key insight to tackle Problem[41]is that
it is possible to build a map between a fragment of STL and
decision trees. Therefore, we can exploit the decision trees
learning literature [23| 22| [4] to build a decision tree that
classifies signals and then map the constructed tree to an
STL formula.

A decision tree is a tree-structured sequence of questions
about the data used to make predictions about the data’s
labels. In a tree, we define: the root as the initial node; the
depth of a node as the length of the path from the root to
that node; the parent of a node as the neighbor whose depth
is one less; the children of a node as the neighbors whose
depths are one more. A node with no children is called a
leaf, all other nodes are called non-terminal nodes. In this
paper, we focus on binary decision trees, where every non-
terminal node splits the data into two children nodes and
every leaf node predicts a label.

Unfortunately, the space of all possible decision trees for a
given classification problem is very large, and it is known
that the problem of learning the optimal decision tree is
NP-complete, for various optimality criteria [14]. Therefore,
most decision-tree learning algorithms are based on greedy
approaches, where locally optimal decisions are taken at
each node. These greedy growing algorithms can be stated
in a simple recursive fashion, starting from the root node,
and require three meta-parameters: the first is a list of pos-
sible ways to split the data; the second is a criterion to select
the best split; and the third is a set of rules for stopping the
algorithm.

Several learning algorithms can be created by selecting dif-
ferent meta-parameters. That is, once the meta-parameters
have been fixed, a specific learning algorithm is instanti-
ated. Since we are not just proposing a single algorithm but
a class of algorithms, we refer to this approach as “decision
tree learning framework for temporal logic inference”. In the
next sections, we explain in detail the parameterized algo-
rithm and the choices we propose for the meta-parameters.

5.1 Parameterized learning algorithm

In Alg. [[] we present the parameterized procedure for infer-
ring temporal logic formulae from data. The meta-parameters
of Alg. [I]are: (1) a set of PSTL primitives P; (2) an impu-
rity measure J; and (3) a set of stopping criteria stop. The
algorithm is recursive and takes as input arguments the for-
mula to reach the current node ¢P**" the set of data that
reached that node S, and the current depth level h.

©o O Utk WNH

Algorithm 1: Parameterized Decision Tree Construction —
buildTree(-)

Parameter: P — set of PSTL primitives
Parameter: J — impurity measure

Parameter: stop — set of stopping criteria

Input: ¢P*" — formula associated with current path
Input: S = {(s°,1"),} - set of labeled signals
Input: h — the current depth level

Output: a (sub)-tree

if stop(¢?**", h, S) then

t < leaf(argmax . -{p(S,c; qbp‘”h)})
return ¢

@" = argmax,,cp gco J (S, partition(S, po A #P 1Y)
t < non_terminal(¢*)

5%, 8% « partition(S, pP " A ¢*)

tleft « buildTree(¢P*™" A ¢*, S%, h +1)

t.right < buildTree(¢P*™ A =¢*, S, h + 1)
return ¢

At the beginning, the stopping conditions are checked (line
1). If they are met, the algorithm returns a single leaf node
marked with the label ¢ € C. The label ¢ is chosen according
to the best classification quality (line 2), using p(S, ¢; pP**")
defined in Def. If the stopping conditions are not met
(line 4), the algorithm proceeds to find the optimal STL for-
mula among all the valuations of PSTL formulae from the
set of primitives P (details in Sec. [5.3). The cost function
used in the optimization is the impurity measure J, which
assesses the quality of the partition induced by PSTL prim-
itives valuations. See Sec. for details. At line 5, a new
non-terminal node is created and associated with the op-
timal STL formula ¢*. Next, the partition induced by the
formula ¢P**" A¢* is computed (line 6). For each outcome of
the split, the buildTree() procedure is called recursively to
construct the left and right subtrees (lines 7-8). The corre-
sponding formula to reach a subtree and the corresponding
data partition are passed. The depth level is increased by
one.

The parameterized family of algorithms uses three proce-
dures: (a) leaf(c) creates a leaf node marked with the label
c € C, (b) non_terminal(¢) creates a non-terminal node
associated with the valuation of a PSTL primitive from
P, and (c) partition(S, $) splits the set of signals S into
satisfying and non-satisfying signals with respect to ¢, i.e.
St, 81 = partition(S, ¢), where St = {(s*,1') € S| s |= ¢}
and S1 = {(s",0') € S| s £ ¢}.

By fixing the meta-parameters (P, J, stop), a particular
algorithm is instantiated. For each possible instance, a deci-
sion tree is obtained by executing buildTree(T, Sroot, 0) on
the set of labeled signals Syo0t. Clearly, the returned tree
depends on both the input data Sy.o: and the particular
instance chosen.

5.2 Tree to STL formula

A decision tree obtained by an instantiation of Alg. [I| can
be used directly for classification or converted to an equiv-
alent STL formula using Alg. [2} The algorithm recursively

N0 Ok W

Figure 1: The formula associated with the tree is ¢iree =

(¢1 A (P2 A pa) V (mp2 A ¢5))) v (wﬁl A(psV (—3 A ¢6)))

and can be obtained algorithmically using Alg. 2] where ¢,
i € {1,...,6} are valuations of primitive formulae from a
set of PSTL formulae P.

traverses the subtree ¢ given as input. At each node, the
formula is obtained by (1) conjunction of the nodes’s for-
mula with its left subtree’s formula, (2) conjunction of the
negation of the node’s formula with its right subtree’s for-
mula, (3) disjunction of (1) and (2). During the recursion
process, Alg. [2Jonly keeps track of the paths reaching leaves
associated with the positive class Cp. To produce the final
formula, the algorithm is executed starting from the root
node, i.e. Tree2STL(root). Fig. [I| shows a decision tree
and its corresponding formula obtained by applying Alg.

Algorithm 2: Tree to formula — Tree2STL(-)

Input: t — node of a tree
Output: STL Formula

if t is a leaf and class associated with t is Cp then
| return T

if t is a leaf and class associated with t is C,, then
‘ return L

¢ = (t-¢ N Tree2STL(t.left))

¢r = (mt.p AN Tree2STL(t.right))

return ¢; V ¢,

5.3 PSTL primitives

To partition the data at each node, a finite list of possible
splitting rules is usually considered . We propose to use
simple PSTL formulae, called primitives, to split the data.
In particular, we define two types of primitives:

DEFINITION 5.1 (FIRST-LEVEL PRIMITIVES). Let S be
the set of signals with values in R™, n > 1. We define the
set of first-level primitives as follows:

Pi = {F[Tln'z)(xi ~) or Giry g (@i ~ p1)
lie{l,...,n}, ~e{<,>}}

The parameters of P1 are (u, T1,72) and the space of param-
eters is ©1 =R x {(a,b) | a < b, a,b € R>o}.

DEFINITION 5.2 (SECOND-LEVEL PRIMITIVES). LetS be
the set of signals with values in R™, n > 1. We define the

set of second-level primitives as follows:

P2 = {Gry ;r)Flo,m3) (@i ~ 1) o8 Flry 1) Gipo,rg) (w5 ~ p1)
lie{l,...,n}, ~€{<,>}}

The parameters of P2 are (u, 71,72, 73) and the space of pa-
rameters is O2 = R x {(a,b) | a < b, a,b € R>o} x R>p.

The meaning of first-level primitives is straightforward. The
two primitives Fi, -,)(zi ~ p) and Gy, -,)(xi ~ p) are
used to express that the predicate z; ~ p must be true
for at least one time instance or for all time instances in
the interval [r1, 72), respectively. Similarly, the second-level
primitives can be interpreted in natural language as: (a)
Fi, +)Gio,m) (i ~) specifies that “the predicate (x; ~)
of duration 73 must be performed and its start time must be
in the interval [71,72)”; and (b) Gi;,) Fo,-) (@i ~ 1) spec-
ifies that “at each time instance in the interval [71,72), the
predicate (x; ~ p) must be true within 73 time units”. Both
first- and second-level primitives may be thought as spec-
ifications for bounded reachability and safety with varying
degrees of flexibility.

Given a set of primitives P, we denote by STLp the STL
fragment obtained by Boolean closure from P.

DEFINITION 5.3 (BOOLEAN CLOSURE). Let P be a fi-
nite set of PSTL formulae. The fragment of STL formulae
induced by P using Boolean closure is defined as:

du=T | Q| d1 A2 | 1V 2

where ¢ is a valuation of a PSTL formula from P.

STLp is the fragment of STL that is mapped with decision
trees. In other terms, each decision tree constructed with the
set of primitives P is mapped to an STL formula belonging
to the STLp fragment.

REMARK 5.1. Note that STLp, C STLp,, because
Fir oyl = F[T1,T2)G[O,O+)l and similarly G,)l =
Giry) Fpo0+)l, where I = (z; ~ p) is a linear inequality
predicate and 01 represents the upper limit towards 0.

REMARK 5.2. [t is important to stress that the proposed
PSTL primitives are not the only possible ones. A user may
define other primitives, either generic ones, like the first-
and second- level primitives, or specific ones, guided by the
particular nature of the learning problem at hand.

5.4 Impurity measures

In the previous section, we defined a list of possible ways to
split the data using a set of primitives P. Now, it is necessary
to define a criterion to select which primitive best splits the
data at each node. Intuitively, a good split leads to children
that are homogeneous, that is, they contain mostly objects
belonging to the same class. This concept has been formal-
ized in literature with impurity measures, and the goal of the
optimization algorithm is to obtain children purer that their
parents. In this section, we first state the canonical impu-
rity measures and then we propose three modified measures,
which are more suited to handle signals, using the robustness
degree.

DEFINITION 5.4 (IMPURITY MEASURES).
nite set of signals, ¢ an STL formula and
St,S1 = partition(S, ¢). The following partition weights
are introduced to describe how the signals s* are distributed
according to their labels I* and the formula ¢:

{(s",1") | 1"=c}
p(S, s 9) = LD L=)
Particularly, pt and p represent the fraction of signals from
S present in St and S, respectively, and p(S,c;$) repre-
sents the fraction of signals in S that belong to class ¢ € C'.

Let S be a fi-

_ Is1l _ 15,
PT =51y PL T ST

The (canonical) impurity measures are defined as [{} [29):
- Information gain (IG)
- > pe - H(Se)

®e{T,L}
H(S)=- Z (S, ¢; @) log p(S, ¢; d) (2)
ceC

- Gini gain (GG)

IG(S,{Sv,S.}) = H(S

GG(S,{ST,5.}) = Gini(S) — Y pe - Gini(Sg)

Re{T,L}
> (S ¢;0)(1 = p(S, ;) 3)

- Misclassification gain (MG)

Gini(S) =

MG(S,{S7,51}) = MR(S) = > ps - MR(Ss)

@e{T,L1}
MR(S) = min(p(S, Cp; ¢), (S, Cn; ¢)) (4)

We extend the impurity measures to account for the robust-
ness degrees of the signals to be classified. These extensions
are based on the intuition that, according to Prop. the
robustness degree can be used in the context of learning as a
measure of the classification quality of a signal with respect
to an STL formula.

DEFINITION 5.5 (EXTENDED IMPURITY MEASURES).
Consider the same setup as in Def. and the same impu-
rity measures, we redefine the partition weights as follows:

Yiies, 75 0) Yies, (5" 9)

PTVcF=" "1/ PL =" 77
Dsies Ir(st, 9 Dsies Ir(st, 9

sics, |7 5’11(‘{)
p(S,c9) = W

where Se = {s' € S | I" = ¢}.

—
ot
=

We will distinguish between the usual impurity measures
and the extended ones by using the subscript r (e.g. IG;)
for the extended impurity measures. The following proposi-
tion ensures that the extended impurity measures are well
defined.

PROPOSITION 5.3. The intra-partition weights are bounded
within 0 and 1 and sum to 1, i.e. 0 < pt,p1 <1 and pT +
pL = 1, in both definitions Def. and Def. The same
invariant property is true for the inter-partition weights, i.e.

0 Sp(sa Cna¢)7p(S7 CP7¢) S 1 and ZCECP(S7 C; ¢) =1

REMARK 5.4. The advantages of using the extended ver-
sions of the impurity measures over the canonical ones are
most pertinent in the context of optimizing these over PSTL
formulae. The robustness-based impurity functions are bet-
ter behaved cost functions, because these are less flat over
the space parameter than their frequency-based counterparts,
i.e. the canonical measures are piecewise constant functions.
Also, we argue that the use of robustness makes the computed
classifiers better at generalizing, i.e. performance on unseen
(test) data. The intuition is that the separation boundaries
tend to be as far as possible from signals of the two classes
in the sense of robustness. In this sense, the canonical mea-
sures are unable to distinguish between formulae which are
barely satisfied by some signals from more robust ones. As
future work, an empirical comparison of the robustness-based
measures against the canonical ones will be performed.

Local optimization

The cost function used in the local node optimization (line
4 of Alg. [1) is one of the impurity measures defined in the
previous section. The optimization is performed over the
chosen set of PSTL primitives P and their valuations ©.
Therefore, the optimization problem is decomposed into |P)|
optimization problems over a fixed and small number of real-
valued parameters. Consider signals of dimension n. In
the case of Pi, we have 4n optimization problems with 3
parameters each. On the other hand, for P2 we have 4n
optimization problems with 4 parameters each.

The local optimization approach presents several advantages.
In particular, the computation of the robustness values in
the definition of the extended impurity measures (Def.
can be performed incrementally with respect to the tree data
structure according to the following preposition.

PROPOSITION 5.5. (INCREMENTAL COMPUTATION OF RoO-
BUSTNESS) At each step of the recursion of Alg. l the ro-
bustness of a signal s* reaching the current node n. can be
computed as follows

r(si¢"e) = r(si "N ¢) = min{r(s¢"*"),r(s19)} (6)

where ¢t corresponds to the currently computed tree, pPet"
corresponds to the branch of the tree from the root to the par-
ent of ne, and ¢ is a candidate valuation of a PSTL primitive
fornec.

The first equality in Eq. @ follows from the construction
of the tree, because the robustness of a signal s* reaching
n. is negative for any other branch of the tree not ending in
ne. The incremental computation can be achieved by taking
advantage of the recursion in the second equality in Eq. @

Another very important advantage of the proposed approach
is that at each iteration of Alg. [1, the data is partitioned
between the children of the currently processed node. Thus,
the local optimization problems become easier as the depth
of the nodes increases.

The local optimization problems may be solved using any
global non-linear optimization algorithm, such as Simulated
Annealing or Differential Evolution. However, in order to

use these numerical optimization algorithms, we need to de-
fine finite bounds for the parameters of the primitive formu-
lae. These bounds may easily be inferred from data, but may
also be application specific, if expert knowledge is available.

5.5 Stop conditions

Several stopping criteria can be set for Alg. The most
common strategy is to just split until the current node con-
tains only signals from a single class or no signals. This
strategy is very permissive, that is, it allows the algorithm
to run for many iterations. However, it represents the suffi-
cient conditions that guarantee the termination of the algo-
rithm. Other more restrictive conditions are possible. For
instance, stop if the vast majority of the signals belong to
the same class, either positive or negative, e.g., stop if 99%
of signals belong to the same class. Another common strat-
egy is to stop if the algorithm has reached a certain, fixed,
depth. These conditions usually provide a faster termina-
tion of the algorithm. In general, a set of stopping criteria
can be assembled by picking several stopping conditions, as
long as the sufficient conditions for the termination of the
algorithm are included.

5.6 Complexity

In this section, we provide a worst-case and average-case
complexity analysis of Alg. [I] in terms of the complexity
of the local optimization procedure (Alg. [1} line 4). This
complexity analysis assumes that just the sufficient stopping
conditions are set. Let C(NN) and g(N) be the complexity of
Alg. [I]and of the local optimization algorithm, respectively,
where N is the number of signals to be processed by the
algorithms. Trivially, we have g(N) = Q(N), where Q(-)
is the asymptotic notation for lower bound , because the
algorithm must at least check the labels of all signals. The
worst-case complexity of Alg. [I] is attained when at each
node the optimal partition has size (1, N — 1). In this case,
the complexity satisfies the recurrence C(N) = C(N —1) +
C(1) 4+ g(N), which implies C(N) = O(N + SN, g(k)),
where O(:) is the two-sided asymptotic notation for com-
plexity bound . However, the worst case scenario is not
likely to occur in large datasets. Therefore, we consider the
average case where at least a fraction v € (0, 1) of the signals
are in one set of the partition. The recurrence relation be-
comes C(N) = C(yN)+C((1 —~)N)+ g(N), which implies
the following complexity bound

e =6 (v (1+ [220))

obtained using the Akra-Bazzi method . Finally, note
that the hidden constants in the complexity bounds above
depend on the cardinality of the set of primitives considered
and the size of their parameterization.

6. CASE STUDIES

In this section, we present two case studies that illustrate
the usefulness and the computational advantages of the al-
gorithms. The first is an anomalous trajectory detection
problem in a maritime environment. The second is a fault
detection problem in an automotive powertrain system. The
automotive application is particularly appealing because the
systems involved are getting more and more sophisticated.

Peninsula

x (dam)

Figure 2: Naval surveillance dataset [18]. The vessels be-
having normally are shown in green. The magenta and blue
trajectories represent two types of anomalous paths.

In a modern vehicle, several highly complex dynamical sys-
tems are interconnected and the methods present in litera-
ture may fail to cope with this complexity.

6.1 Maritime surveillance

This synthetic dataset emulates a maritime surveillance prob-
lem, where the goal is to detect suspicious vessels approach-
ing the harbor from sea by looking at their trajectories. It
was developed in , based on the scenarios described in
, for evaluating their inference algorithms.

The trajectories are represented with planar coordinates z(t)
and y(t) and were generated using a Dubins’ vehicle model
with additive Gaussian noise. Three types of scenarios, one
normal and two anomalous, were considered. In the nor-
mal scenario, a vessel approaching from sea heads directly
towards the harbor. In the first anomalous scenario, a ship
veers to the island and heads to the harbor next. This sce-
nario is compatible with human trafficking. In the second
anomalous scenario, a boat tries to approach other vessels in
the passage between the peninsula and the island and then
veers back to the open sea. This scenario is compatible with
terrorist activity. Some sample traces are shown in Fig. 2]
The dataset is composed of 2000 total traces, with 61 sam-
ple points per trace. There are 1000 normal traces and 1000
anomalous.

6.2 Fuel control system

We investigate a fuel control system for a gasoline engine.
A model for this system is provided as built-in example in
Simulink and we modified it for our purposes. This model
was initially used for Bayesian statistical model checking
and has been recently proposed as benchmark for the hybrid
systems community . We selected this model because it
includes all the complexities of real world industrial models,
but is still quick to simulate, i.e., it is easy to obtain a large
number of traces.

The key quantity in the model is the air-to-fuel ratio, that
is, the ratio between the mass of air and the mass of fuel
in the combustion process. The goal of the control system
is to keep it close to the “ideal” stoichiometric value for the
combustion process. For this system, the target air-fuel ra-
tio is 14.6, as it provides a good compromise between power,
fuel economy, and emissions. The system has one main out-
put, the air-to-fuel ratio, one control variable, the fuel rate,
and two inputs, the engine speed and the throttle command.
The system estimates the correct fuel rate to achieve the tar-
get stoichiometric ratio by taking into account four sensor
readings. Two are related directly to the inputs, the engine
speed and the throttle angle. The remaining two sensors
provide crucial feedback information: the EGO sensor re-
ports the amount of residual oxygen present in the exhaust
gas, and the MAP sensor reports the (intake) manifold ab-
solute pressure. The EGO value is related to the air-to-fuel
ratio, whereas the MAP value is related to the air mass
rate. The Simulink diagram is made of several subsystems
with different kinds of blocks, both continuous and discrete,
among which there are look-up tables and a hybrid automa-
ton. Due to these characteristics, this model can exhibit a
rich and diverse number of output traces, thus making it an
interesting candidate for our investigation.

The base model, that is, the one included in Simulink, in-
cludes a very basic fault detection scheme and fault injection
mechanism. The fault detection scheme is a simple thresh-
old crossing test (within a Stateflow chart), and is only able
to detect single off range values. For avoiding the overlap of
two anomaly detection schemes, the built-in one has been re-
moved. In the base model, the faults are injected by simply
reporting an incorrect and fixed value for a sensor’s reading.
Moreover, these faults are always present from the beginning
of the simulation. We replaced this simple fault injection
mechanism with a more sophisticated unit. The new sub-
system is capable of inducing faults in both the EGO and
MAP sensors with a random arrival time and with a random
value. Specifically, the faults can manifest at anytime dur-
ing the execution (uniformly at random) and the readings of
the sensors affected are offset by a value that varies at ev-
ery execution. Finally, independent Gaussian noise signals,
with zero mean and variance o = 0.01, have been added at
the output of the sensors.

For the fuel control system, 1200 total simulations were per-
formed. In all cases, the throttle command provides a peri-
odic triangular input, and the engine speed is kept constant
at 300 rad/sec (2865 RPM). The simulation time is 60 sec-
onds. In details, we obtained: 600 traces where the system
was working normally; 200 traces with a fault in the EGO
sensor; 200 traces with a fault in the MAP sensor; 200 traces
with faults in both sensors. For every trace, we collected 200
samples of the EGO and MAP sensors’ readings. Some sam-
ple traces are shown in Fig. [3] The average simulation time
to obtain a single trace was roughly 1 second.

7. IMPLEMENTATION AND RESULTS

We implemented and tested two different instances of Alg[l]
I, and Iz, defined by the choice of meta-parameters given
in Table [I] In the case of I1, the implementation was done
in MATLAB using standard libraries, employing the simu-
lated annealing optimization method, and run on a 3.5 GHz

EGO sensor

I T
e TP A WS AT L

VVATYA
.‘ s ™\

‘\VIN
N
'\‘-\VIFQ\/

M| /A

Figure 3: Fuel Control Dataset. Normal traces are shown in
green, anomalous traces are shown in red.

Instance | Primitives | Impurity | Stopping
I P1 MG, Majority class rate
>0.975, Depth >4
Iy Po 1G, Depth >3

Table 1: Algorithm meta-parameters. See Sec. [5|for details.

processor with 16 GB RAM. As for I5, we used the SciPy li-
brary for Python, solving the optimization problem with its
implementation of the differential evolution algorithm, and
we tested it on similar hardware.

7.1 Maritime surveillance

We tested the 2 instance using a non stratified 10-fold cross-
validation with a random permutation of the data set, ob-
taining a mean misclassification rate of 0.007 with a stan-
dard deviation of 0.008 and a run time of about 4 hours per
split. A sample formula learned in one of the cross-validation
splits is:

O = ($12 A (2937 V (93° A —652))) V (~1% A (642 A 652))
¢12 = Gi199.70,207.27)F [0.00,0.05) (% < 23.60)

b5 = Gi1.47,16.60)F[0.00,198.73) (¥ < 24.20)

05> = G3a.40,52.80)F[0.00,61.70) (y < 19.62)

0> = G30.96,37.88) F[0.00,250.37) (¥ < 36.60)

o2 = G 62.76,253.23) F[0.00,41.07) (¥ < 29.90)

(7
We can see in Fig.@how the thresholds for ¢1 and ¢2 capture
the key features of the data set. Notice also the insight we
can gain from their plain English translation: “Normal ves-

X (dam)

Figure 4: Sample of the naval surveillance dataset. Normal
trajectories are green and anomalous trajectories are red.
We show in blue the boundaries of qﬁ{? and ¢£2 of Eq. @

sels” x coordinate is below 23.6 during the last 100 seconds,
i.e., they approach and remain at the port”, and “normal
vessels” y coordinate never go below 24.2; i.e., they don’t
approach the island”. It is worth mentioning the second
term of the outer disjunction in ¢’2, as it highlights a fea-
ture of the data set difficult to spot on the figures: some
normal vessels don’t reach the port (inspecting the data set,
some normal traces stop right after crossing the passage).
As usual when employing decision trees, deeper formulae
focus on finer details of the data set.

In the case of I, we tested it using a 5-fold cross-validation,
obtaining a mean misclassification rate of 0.01 and a stan-
dard deviation of 0.0064. The run time is about 16 minutes
per split. A sample formula learned in one of the splits is:

R N T D M N CANEED)
o1t = Gioa.6,300) (¥ < 35.3)
¢yt = Go,300) (¥ > 23)
3= G 298,300) (z < 25.9)
oy = G182,300) (z < 19.6)
o' = Gosre) (z > 42.6)

Note the similarity between the subformulae d)éz and ¢>£1, or
between ¢{2 and d)él in Eq. @ and Eq. , respectively.

This dataset was also used in . Unfortunately, it is not
possible to make a formal comparison between the formulae
learned by our approach and the ones in . This is due to
the fact that iPSTL, defined in [18], and STLp, (or STLp,)
do not represent the same STL fragment. However, it is
always possible to make a comparison in terms of sheer clas-
sification performance. In the comparison, it is clear that
we improve the misclassification rate by a factor of 20 while
spending a similar amount of execution time.

7.2 Fuel control

In this scenario, we tested both instances using the EGO
and MAP sensors’ readings (variables x1 and z2). We per-
formed a similar cross-validation for /5, resulting in a mean
misclassification rate of 0.054 with a standard deviation of

0.025 and a run time of about 15 hours per split. A sample
formula, obtained from one of the cross-validation splits, is:

¢" = 261" A 6y’ A by’
¢{2 = F1.85,58.70)G[0.00,0.57) (#1 < 0.13)

¢’£2 = G11.35,50.55) F[0.00,0.03) (21 < 0.99)
52 = Gi1.65,58.50)F[0.00,0.44) (72 < 0.90)
Notice in this case how the resulting subformulae are equiv-
alent to first-level primitives, suggesting that P2 is an overly
complicated set of primitives.

Regarding [, using a 5-fold cross-validation, we obtained a
mean misclassification rate of 0.075 and a standard deviation
of 0.0256. The run time is about 18 minutes per split. A
sample formula learned in one of the splits is:

¢ = o1 A (03" A (5" A dr))
¢1' = Go,50.7)(x2 > —0.563)
o= Gio,50.7) (22 < 1.91) (10)
¢35 = Go,s0.7)(z1 > —0.819)
o5t = G23.7,50.7) (71 < 1.78)

In both case studies, the execution time of I is higher then
I1. This occurs because the instance Is involves a more com-
plicated optimization problem. Specifically, I> uses primi-
tives from P with 4 free parameters, whereas I uses prim-
itives with only 3 free parameters.

8. CONCLUSION

In this paper, we presented an inference framework of timed
temporal logic properties from time series data. The frame-
work defines customizable decision-tree algorithms which
output Signal Temporal Logic (STL) formulae as classifiers.
This work is in line with recent interest in Temporal Logic
Inference (TLI) and is motivated by the need to construct
classifiers which provide good performance and can be in-
terpreted over specific application domains. The proposed
algorithms are model-free and are suitable for inferring prop-
erties from time series data for problems such as anomaly
detection, monitoring, and application domains as diverse
as the automotive industry and maritime port security.

The proposed framework describes decision-tree based learn-
ing algorithms which may be customized by providing three
components: (a) a set of primitive properties of interest;
(b) an impurity measure which captures the node’s homo-
geneity; and (c) stopping conditions for the algorithm. The
performance advantage of the proposed procedures is due
to the incremental nature of growing STL formulae repre-
sented as trees. Moreover, the problem of finding optimal
primitives becomes easier as a procedure grows a tree. This
follows from the fact that a node’s optimization problem has
always a fixed number of parameters and the data is parti-
tioned between the two children of the node. Another con-
tribution of the paper is the definition of extended versions
of the classical impurity measures such that these take into
account the robustness degrees of signals. We argue that
the extended versions of the impurity measures increase the
generalization capability of the resulting formulae.

In the paper, we test two possible instances of the frame-
work (form a possibly very large set of choices) on two case
studies in the maritime security and automotive fields. We
show that the algorithms are able to capture relevant timed
properties in both cases. The quality of the computed STL
formulae is assessed using the misclassification rate averaged
over multiple test folds.

Future work includes extending the proposed framework to
online mode, where traces are provided incrementally, in-
stead of a single batch of signals available from the beginning
of the learning procedure. We plan to perform a comprehen-
sive comparative study of the framework for multiple choices
of primitive formulae sets and impurity measures, tested on
case studies of varying complexity. Future work will also fo-
cus on improving the local optimization procedures, which
will boost the overall performance of the framework.

9. ACKNOWLEDGMENTS

This work was partially supported by DENSO CORPO-
RATION and by the Office of Naval Research under grant
N00014-14-1-0554.

10. REFERENCES

[1] E. Asarin, A. Donzé, O. Maler, and D. Nickovic.
Parametric identification of temporal properties. In
Runtime Verification, pages 147-160. Springer, 2012.

[2] E. Bartocci, L. Bortolussi, L. Nenzi, and
G. Sanguinetti. System design of stochastic models
using robustness of temporal properties. Theoretical
Computer Science, 587:3-25, July 2015.

[3] E. Bartocci, L. Bortolussi, and G. Sanguinetti.
Data-driven statistical learning of temporal logic
properties. In Formal Modeling and Analysis of Timed
Systems, pages 23-37. Springer, 2014.

[4] L. Breiman, J. Friedman, C. J. Stone, and R. A.
Olshen. Classification and regression trees. CRC press,
1984.

[5] S. Bufo, E. Bartocci, G. Sanguinetti, M. Borelli,

U. Lucangelo, and L. Bortolussi. Temporal Logic
Based Monitoring of Assisted Ventilation in Intensive
Care Patients. In Leveraging Applications of Formal
Methods, Verification and Validation, number 8803 in
Lecture Notes in Computer Science, pages 391-403.
Springer, Oct. 2014.

[6] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
Detection: A Survey. ACM Comput Surv,
41(3):15:1-15:58, July 2009.

[7] T. H. Cormen. Introduction to Algorithms. MIT Press,
third edition, July 2009.

[8] A. Donzé, T. Ferrere, and O. Maler. Efficient robust
monitoring for STL. In Computer Aided Verification,
pages 264—279. Springer, 2013.

[9] A. Donzé and O. Maler. Robust Satisfaction of
Temporal Logic over Real-Valued Signals. In
K. Chatterjee and T. A. Henzinger, editors, Formal
Modeling and Analysis of Timed Systems, number
6246 in Lecture Notes in Computer Science, pages
92-106. Springer Berlin Heidelberg, 2010.

[10] G. E. Fainekos and G. J. Pappas. Robustness of
temporal logic specifications for continuous-time
signals. Theor. Comput. Sci., 410(42):4262-4291, Sept.

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]
23]

(24]

(25]

2009.

E. A. Gol, E. Bartocci, and C. Belta. A formal
methods approach to pattern synthesis in reaction
diffusion systems. In Decision and Control (CDC),
2014 IEEE 53rd Annual Conference on, pages
108-113. IEEE, 2014.

R. Grosu, S. A. Smolka, F. Corradini, A. Wasilewska,
E. Entcheva, and E. Bartocci. Learning and detecting
emergent behavior in networks of cardiac myocytes.
Commun. ACM, 52(3):97-105, 2009.

B. Hoxha, H. Abbas, and G. Fainekos. Benchmarks for
temporal logic requirements for automotive systems.
Proc Appl. Verification Contin. Hybrid Syst., 2014.

L. Hyafil and R. L. Rivest. Constructing optimal
binary decision trees is NP-complete. Information
Processing Letters, 5(1):15-17, May 1976.

R. Isermann. Fault-diagnosis systems. Springer, 2006.
X. Jin, A. Donzé, J. Deshmukh, and S. A. Seshia.
Mining Requirements from Closed-Loop Control
Models. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., PP(99):1-1, 2015.

A. Jones, Z. Kong, and C. Belta. Anomaly detection in
cyber-physical systems: A formal methods approach.
In Decision and Control (CDC), 2014 IEEE 53rd
Annual Conference on, pages 848-853. IEEE, 2014.

Z. Kong, A. Jones, and C. Belta. Temporal Logics for
Learning and Detection of Anomalous Behaviors.
IEEE Trans. Autom. Control, 2016. inpress.

Z. Kong, A. Jones, A. Medina Ayala, E. Aydin Gol,
and C. Belta. Temporal Logic Inference for
Classification and Prediction from Data. In
Proceedings of the 17th International Conference on
Hybrid Systems: Computation and Control, HSCC ’14,
pages 273-282, New York, NY, USA, 2014. ACM.

K. Kowalska and L. Peel. Maritime anomaly detection
using Gaussian Process active learning. In 2012 15th
International Conference on Information Fusion
(FUSION), pages 1164-1171, July 2012.

O. Maler and D. Nickovic. Monitoring Temporal
Properties of Continuous Signals. In Y. Lakhnech and
S. Yovine, editors, Formal Techniques, Modelling and
Analysis of Timed and Fault-Tolerant Systems,
number 3253 in Lecture Notes in Computer Science,
pages 152—166. Springer Berlin Heidelberg, 2004.

J. R. Quinlan. C4.5: Programs for Machine Learning.
Elsevier, June 2014.

B. D. Ripley. Pattern recognition and neural networks.
Cambridge university press, 1996.

H. Yang, B. Hoxha, and G. Fainekos. Querying
Parametric Temporal Logic Properties on Embedded
Systems. In Testing Software and Systems, number
7641 in Lecture Notes in Computer Science, pages
136-151. Springer, 2012.

P. Zuliani, A. Platzer, and E. M. Clarke. Bayesian
statistical model checking with application to
Stateflow/Simulink verification. Form Methods Syst
Des, 43(2):338-367, Aug. 2013.

	Introduction
	Related work
	Signal Temporal Logic
	Problem formulation
	Learning decision trees
	Parameterized learning algorithm
	Tree to STL formula
	PSTL primitives
	Impurity measures
	Stop conditions
	Complexity

	Case Studies
	Maritime surveillance
	Fuel control system

	Implementation and results
	Maritime surveillance
	Fuel control

	Conclusion
	Acknowledgments
	References

