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Hybrid Incremental Modeling Based on Least
Squares and Fuzzy -NN for Monitoring

Tool Wear in Turning Processes
Francisco Penedo, Rodolfo E. Haber, Member, IEEE, Agustín Gajate, and Raúl M. del Toro

Abstract—There is now an emerging need for an efficient mod-
eling strategy to develop a new generation of monitoring systems.
One method of approaching the modeling of complex processes is
to obtain a global model. It should be able to capture the basic or
general behavior of the system, by means of a linear or quadratic
regression, and then superimpose a local model on it that can
capture the localized nonlinearities of the system. In this paper, a
novel method based on a hybrid incremental modeling approach is
designed and applied for tool wear detection in turning processes.
It involves a two-step iterative process that combines a global
model with a local model to take advantage of their underlying,
complementary capacities. Thus, the first step constructs a global
model using a least squares regression. A local model using the
fuzzy -nearest-neighbors smoothing algorithm is obtained in the
second step. A comparative study then demonstrates that the hy-
brid incremental model provides better error-based performance
indices for detecting tool wear than a transductive neurofuzzy
model and an inductive neurofuzzy model.

Index Terms—Fuzzy -nearest-neighbors, hybrid model, ma-
chining processes, tool wear.

I. INTRODUCTION

M AJOR advances in techniques for modeling complex,
large-scale systems are currently under development.

Effective understanding, control and optimization of such sys-
tems may only be achieved through a model or some similar
representation. Themodeling process consists of finding amath-
ematical representation of its behavior (differential equations,
integral equations, etc.). However, the application of conven-
tional techniques to the complexity and nonlinearity of certain
processes is cumbersome and costly.
In general, one of the main shortcomings when modeling a

system is the need for prior knowledge of the structure that the
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model will take (parametric model) before an approximation is
made. Unfortunately, in most real cases, it is not easy to define
the structure or functional form of themodel, and any decision in
this regard can subjectively influence the nature of the problem.
This situation has sparked an interest in the study and use of
nonparametric techniques [1].
Nowadays, efficient modeling strategies are a key issue in the

development of a new generation of monitoring systems. Sta-
tistics and soft-computing techniques have been widely applied
to process modeling and monitoring over past decades. A wide
variety of methods based on principal component analysis [2],
partial least squares [3], fuzzy and neural computing [4]–[6],
evolutionary computation and machine learning [7], and prob-
abilistic reasoning have been developed for process monitoring
and fault diagnosis [8]. A complete review of current research
and development in this area goes beyond the scope of this
paper. Nevertheless, it is of interest to assess how this topic has
been addressed from the perspective of industrial informatics.
Odiowei and Cao [2] recently reported an interesting example of
current research based on principal component analysis (PCA).
They propose and verify a newmonitoring technique combining
canonical variate analysis and kernel density estimation in a
simulated plant.
Among soft-computing techniques, fuzzy clustering is one

of the most intensively used strategies for process modeling
and monitoring [9]. Fuzzy -means, Gustafson–Kessel (G–K),
Gath–Geva (G–G), and fuzzy -nearest neighbor are the most
commonly applied methods. Filev et al. [10] have recently
presented a practical framework for autonomous monitoring of
equipment to enable autonomous diagnostics and prognostics.
The kernel of this approach is an “evolving” model based on
unsupervised learning methods and the application of a Greedy
expectation maximization (EM) clustering algorithm [11],
in which multiple fuzzy regions serve to represent machine
signatures under different operating conditions. Lo et al. [12]
proposed a fuzzy-genetic algorithm as the foundation for
automatic failure detection systems in aircraft. A fuzzy-based
classifier is employed to estimate time of occurrence and the
type of actuator failure. They demonstrated viability of the
suggested approach, which combines the strengths of fuzzy rea-
soning and heuristic optimization, through various simulations.
Notable among the various model-free methods in the litera-

ture are the incremental models proposed by Pedrycz and Kwak
[1]. This approach exploits the principle of model incremen-
tality, in the sense that any model has to start with the simplest,
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most generic (global) form imaginable. If necessary, it is then
iteratively tuned by invoking some more refined (and localized)
technique to model a particular region of the input space. The
present work applies that principle to the development of a hy-
brid incremental model inspired in [13] and then applies the
overall strategy to the detection of tool wear. Since the basic
or global level has to be as simple as possible, linear regres-
sion techniques are clearly a viable solution because of their
straightforward application. The counterpart technique we se-
lected for the subsequent refinement of the basic model in the
form of hybrid incremental models is the fuzzy -nearest-neigh-
bors smoothing algorithm [14].
Here, we apply hybrid incremental modeling to manufac-

turing technologies that are widely used in industrial processes
throughout the world [5], in order to illustrate the benefits of the
procedure. Among these technologies, machining processes are
of particular importance, because of their relevance in such key
sectors as the aeronautics, aerospace, and automotive industries.
A machining process consists of various subprocesses: drilling
(30%), turning (20%), milling (16%), thread-cutting (15%), en-
graving (6%), and others (13%) [8]. All these processes re-
quire expensive equipment and materials and skilled operators.
Hence, a model that can efficiently describe the physical pro-
cesses that occur within them would be essential for their im-
provement and optimization. In particular, it is very difficult to
optimize productivity and minimize the risk of failures and ma-
chine and tool breakages without the aid of models.
For example, the complex characteristics of an electro-

mechanical process such as turning places constraints on the
use of conventional mathematical tools for its modeling. When
conventional techniques fail to produce the expected results,
because there is either no exact mathematical model, or it is
excessively complex, hybrid modeling techniques can play
an essential role. In particular, they can overcome certain
limitations: imprecise exact knowledge of nonlinear aspects of
a process and difficulties in the linear or quasi-linear represen-
tation of a nonlinear process.
The main contributions of this work are threefold. First, the

design of a computational efficient algorithm, implemented on
the basis of work by Roh et al. [13]. Second, the development
of an algorithm that enables the exploration of model param-
eters, on the basis of an error criterion to achieve an optimal
setting of the modeling parameters. This means that the choice
of the most appropriate model parameters (order of the poly-
nomial , neighborhood size , and fuzzy strength parameter
) may be enabled in a user-friendly environment. Finally, the
third contribution of this paper is the application of hybrid in-
cremental modeling to the manufacturing industry for tool wear
monitoring in a turning process. This industrial case study is
selected, because tool wear reduces the surface quality of a ma-
chined workpiece and increases the power consumption of the
machine tool [15], [16].
The rest of this paper is organized as follows. Section II

presents a brief description of hybrid incremental modeling.
Section III describes its application to the modeling of tool
wear in turning processes, and the results are compared with

those of neurofuzzy models reported in the literature [17], [18].
Finally, Section IV presents the conclusions.

II. HYBRID INCREMENTAL MODELING

Hybrid incremental modeling (HIM) aims to provide an ap-
proximation of the behavior of a locally nonlinear system [13].
To that end, the strategy is to use a global model that captures the
basic or general behavior of the system and then superimposes
a local model on it that captures the local behavior. The idea
arises from the concept of an incremental model as proposed by
Pedrycz [1]: “Adopting a construction of linear regression as a
first-principle global model, refine it through a series of local
fuzzy rules that capture the remaining and more localized non-
linearities of the system.”

A. Local Model

When no prior knowledge of the system is available, a generic
model, such as a linear regression or second-order polynomials,
can conveniently represent the global behavior of the system.
If, however, some prior knowledge of the system is available, it
might be possible to use a function that better matches the global
behavior.
In our case, it was decided to use a generic strategy to obtain

the global model by applying least squares to fit a polynomial
of degree . The output of the global model would therefore be
as follows:

(1)

where is the th input data, and is its output (target)
value.
The procedure to obtain the global model consists of com-

puting and storing the parameters of the fitting function (in this
case the polynomial). The algorithm is evaluated at a query
data from the function with the parameters obtained during
training.

B. Local Model

The development of the local model is based on the fuzzy
-nearest neighbors approach. Compared to other
techniques, is simple, easily interpretable and can
achieve an acceptable accuracy rate [14], [19], [20]. The fuzzy
version of -NN averages the value of the points closest to the
query point, on the assumption that points close to each other
have similar values [21]. However, standard -nearest neighbor
methods place equal weights on all the selected neighbors, re-
gardless of their distances from the query data [22]. In this
work, the problem is partially addressed by data normalization.
Learning in fuzzy -NN is simple, in the sense that, at this stage,
it is only necessary to store the known data. The set is the neigh-
borhood of a query point

(2)

where, is the set of input points for the algorithm, and is
one of the -nearest neighbors of .
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The similarity between and the points of is given by

if

if

(3)
where is the th neighbor of the query point , and is the
fuzzy strength parameter.
The target value of query point is now calculated as the

mean of the target values of the points of the set , weighted
by the similarity

(4)

C. Incremental Model

The incremental model integrates the two models described
above. As previously made clear, locally adjusts the
output value of the polynomial, as it does not capture the non-
linear localized characteristics of the system. The basic model
is first trained by obtaining the coefficients of the polynomial of
order that best fit the data.
Thus, let be the function that is the output of the basic

model. Then the prediction error of the basic model is

(5)

These errors are the target values of the samples which are
passed to the local model for training. It means that
does not use original input-output data, but the errors resulting
from the global modeling strategy. Thus, the local modeling
done by is responsible for refining the global model
output in regions with localized nonlinear behavior or where
the polynomial can not properly represent the system. It is im-
portant to remark that neighborhood size , and fuzzy strength
parameter are not necessary at this stage in the training, which
considerably reduces the complexity of the modeling.
The incremental model evaluates a sample of data input , by

adding to the output of the basic model the compensation term
calculated by the local model according to (4)

(6)

A theoretical example for illustrative purposes of hybrid
incremental modeling is given below in Fig. 1. A theoretical
function is generated from a straight line (linear region) and
a Gaussian function, choosing . The residuals (dotted
line) are the target values for training the local model. In the
evaluation, the basic model generates an output (straight line)
and the local model uses the knowledge of local errors taken
from the polynomial to refine the output. For the sake of clarity,
the estimated output of the HIM is depicted in grey.
The detailed algorithm that supports the design of the pro-

posed hybrid incremental models is outlined as a sequence of
the steps listed in Figs. 2 and 3. The first part trains the model

Fig. 1. Example application of HIM representing a theoretical function.

Fig. 2. Steps in training the incremental model.

Fig. 3. Steps in evaluating the incremental model.

on the target data (see Fig. 2), and the second evaluates the re-
sulting model with the new data (see Fig. 3).

D. Data Normalization

The data variables are usually spread over very different
ranges. This means that both the global and the local algorithms
have to work under extreme conditions in which some of the
input variables can be discarded, and weights are only given to
variables with a broader domain. If the standard normalization
(mean and standard deviation) is applied to the local model,
then the selection of neighbors will discard variables with
narrow ranges because of their negligible effect on the norm.
The performance of clustering algorithms is influenced by

input-output data characteristics and data normalization or stan-
dardization is necessary in many real problems. There are many
types of normalization, in order to scale data to fit in a specific
range. For the sake of simplicity, only standard normalization is
considered in this work.
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Fig. 4. User interface for aiding HIM development.

Denoting variable of input point as yields the normal-
ized points in the following form, also known as standard score
or standard normalization:

(7)

(8)

(9)

where is the mean of the th variable, its standard
deviation, and the number of input points.
We used the C/Java programming language to implement the

algorithm, and all the tests were performed on both Linux 2.6
kernel and Windows XP. The overall view of program interface
is depicted in Fig. 4.

E. Algorithm Complexity

The complexity of the algorithm is related to the two algo-
rithms that constitute the hybrid incremental training. With re-
gard to the training step, let be the number of training sam-
ples, the number of evaluation samples and the number
of input variables. In the case of the above-mentioned algo-
rithms (least squares and ), floating point operations

(assuming an algorithm based on SVD) and the
construction of the extended matrix are used to
consider the complexity of the HIM. simply stores
information on the hard disk. The operations of the HIM con-

TABLE I
COMPUTING TIME FOR TRAINING AND EVALUATION IN

RELATION TO THE SIZE OF FILES

sist of polynomial evaluation, which were implemented in the
floating-point operations .
In the case of the evaluation step, the overall cost is the cost

of evaluating the polynomial for the samples plus the heavy
computing load due to local model computing. In this imple-
mentation, for the sake of simplicity, we performed the calcu-
lation of neighborhood , sorting the data by proximity to
the target. The complexity for each data set under evaluation is
therefore comparisons for sorting, where each
comparison calculates two distances ( floating-point opera-
tions for each Euclidean distance). The computational cost of
calculating the performance index or figure of merit should be
included after obtaining .
For example, considering an Intel (R) Core (TM) i7-2600

CPU@3.40 GHz, a study of the computing time is shown
in Table I. These processing times (in seconds) are obtained
with the polynomial degree , , and evaluation
databases of different sizes.

III. EXPERIMENTAL STUDIES

We applied our technique to a real problem of vital impor-
tance in the world of industrial machining: tool wear moni-
toring in turning processes. The hybrid incremental modeling
strategy was then compared with other techniques used to deal
with problems of this type in order to demonstrate its benefits.

A. Tool Wear Monitoring

Tool wear monitoring is a crucially important factor in
turning processes. The accuracy of tool wear monitoring is a
key issue with high economic costs in industrial sectors. We
address this problem through the hybrid incremental model
that will serve to improve too wear monitoring in turning oper-
ations. The models used in the comparative study, are created
from a series of input-output data. The inputs to the model are
time , cutting force , tool vibrations (acceleration, ),
and the process’s acoustic emission signals (AES). The output
is tool wear ( , wear at the flank). The data set used to create
the models and the other data used to test them were obtained
from an experimental platform described in [18]

(10)
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Fig. 5. Overall system using the black-box approach.

Fig. 6. Experimental data for modeling tool wear.

The overall view of the system using the black box approach
is depicted in Fig. 5. The diagram includes the above-mentioned
inputs and output and also the parameters of the hybrid incre-
mental model. For every operation carried out with the lathe,
the acoustic emission signals (number of pulses), tool vibration
(acceleration), cutting force, process time, and information on
the state of the cutting tool (tool wear data) are logged, pro-
cessed, and stored on a PC. The measurement devices are a dy-
namometer, an accelerometer, an acoustic emission sensor, and
a microscope to measure tool wear.
The data used to create the incremental model were obtained

from turning operations on workpieces of two different mate-
rials: cast iron (gray cast iron FG15) and a steel alloy (EN24),
in order to test the validity of the tool wear model for different
materials. A Widia CCMT 060204 TTS uncoated carbide insert
tool was used for both materials.
Four experiments were performed on eachmaterial. The same

cutting depth, 0.7 mm, was used for all operations on both ma-
terials. The tool wear, in particular, the flank wear, was mea-
sured offline under a microscope. Table II summarizes the ex-
perimental condition for each run.
Only the FG15 experimental data are depicted in Fig. 6, for

the sake of clarity and conciseness.

TABLE II
EXPERIMENTAL CONDITIONS FOR EACH RUN

The figure-of-merit or performance index used as an total av-
erage error (TAE), which gives an idea of overall model behavior

(11)



816 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 8, NO. 4, NOVEMBER 2012

TABLE III
MAIN PARAMETERS OF EACH MODELING STRATEGY CONSIDERED IN THIS STUDY

BP= Backpropagation. MF=Membership Function. LSE=Least Square Error. IBL= Instance Based Learning.

where, is the actual tool wear (measured by microscopy),
is the wear obtained through the model, and is the number of
data points in each experiment.
This error-based performance index is selected because it is

widely applied in industry for assessing the actual performance
of manufacturing systems. Moreover, this figure of merit has
been applied in previous case studies [17], [18] evaluating the
performance of other modeling strategies.
However, on occasions there is a need to examine the local

behavior of the model. For this purpose, we selected as a second
figure-of-merit (accuracy index) the number of data points in
each experiment with an (individual) average error (AE) higher
than 10%. This figure was chosen because, at an industrial level
(especially in a context of process monitoring), certain margins
of error are acceptable due to noise in the signals and sensor
inaccuracy. Accordingly, errors of below 10% are usually more
or less acceptable (on a case-by-case basis), whereas above this
level the information has to be regarded with caution.
The resulting tool wear data were modeled using the sug-

gested HIM procedure. First, the most appropriate set of param-
eters was estimated by exploring the region ,

, where , ; . It means that six
integer values were considered for , five integer values for ,
and thirty real values (step 0.1) were considered for . Finally,
nine hundred combinations were verified to find the most ap-
propriate set of parameters . As shown in Section II-D,
the processing time was very short. However, an optimization
strategy based on simulated annealing is under design to im-
prove the efficiency of the algorithm [23].
The minimum was obtained for

and for FG15 (average value for run 1 to run 4). The

minimum for EN24 was , which
produced an error of 3.69% (average value for run 5 to run 8).
For the sake of computational simplicity the set of parameters

was selected. This implies a first order
polynomial (linear), only one neighbor for the neighborhood
size, and 2 for the fuzzy strength parameter.
A comparative study with an adaptive neural-fuzzy infer-

ence system (ANFIS) [18] and a transductive-weighted neuro-
fuzzy inference system (TWNFIS) [17], [24] was conducted, in
order to evaluate the performance of the proposed strategy for
modeling tool wear. The reader can find further details on the
topology and training parameters of the neurofuzzy models in
[17]. The ANFIS parameters are: seven (FG15) and ten (EN24)
membership functions, three iterations in the backpropagation
training algorithm with a 0.001 learning rate and zero error tol-
erance. TWNFIS parameters are basically four neighbors (FG15
and EN24) in the algorithm, a clustering threshold value of 0.32
(maximum diameter), the minimum number of elements for the
clustering algorithm is 1 and the training algorithm uses the
same parameters as ANFIS. Table III summarizes the main pa-
rameters and characteristics of the three methods considered in
this study.
The results obtained by the three models considered in this

study (ANFIS, TWNFIS and HIM) are shown in Table IV. HIM
outperformed both ANFIS and TWNFIS. TWNFIS yielded
slightly better accuracy than HIM in only three runs (3, 5, and
7). Moreover, the overall (3.36%) of the HIM-based
model is less than the average of the TWNFIS-based
model (4.55%). Therefore, HIM improves the by about
25% with regard to TWNFIS and reduces the of ANFIS
threefold. Likewise, tool wear estimation when higher than
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TABLE IV
COMPARATIVE STUDY OF THE THREE MODELS (ANFIS, TWNFIS, AND HIM)

Fig. 7. Measured and estimated tool wear for the three models in experiment
4.

a threshold value was also recorded and analyzed.
The number of data points surpassing the threshold was higher
in the TWNFIS-based model than in the HIM-based model. It
is important to remark that the main advantage of HIM with
regard to ANFIS and TWNFIS is that training may be done
without assuming two different material properties (FG15 and
EN24). This difference meant that the results of ANFIS and
TWNFIS were achieved for each material separately, training
and validating each material independently.
Two experiments are shown in Figs. 7 and 8, in order to visu-

ally assess the behavior of the model. The best result obtained
with HIM, corresponding to experiment 4, is depicted in Fig. 7.
The worst result obtained by HIM in experiment 7 is shown in
Fig. 8.

IV. CONCLUSION

In order to improve the efficiency of modeling for process
monitoring, a hybrid incremental modeling strategy has been
designed and implemented. The hybrid incremental model has
been applied to detect tool wear in turning processes.
The procedure for designing and implementing hybrid in-

cremental models is simple and computationally efficient. Our

Fig. 8. Measured and estimated tool wear for the three models in experiment
7.

study has demonstrated how we can capture the essential char-
acteristics of processes with only a few parameters and a basic
configuration (first order polynomial, one neighbor and the eas-
iest fuzzy strength parameter). Moreover, the determination of
the parameters for the hybrid incremental model (order of the
polynomial, number of neighbors and fuzzy strength parameter)
has shown how obtain computationally efficient models may be
obtained with few neighbors and a very low-order polynomial.
Finally, the comparative study with other soft-computing

techniques has demonstrated the potential of hybrid incre-
mental modeling. The hybrid incremental model provides
better accuracy than a transductive neurofuzzy model and an
inductive neuro-fuzzy model. Likewise, the hybrid incremental
model also provides better error-based performance indices for
detecting tool wear than above-mentioned neuro-fuzzy models.
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