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ABSTRACT

Partial differential equations (PDEs) model nearly all of the physical systems and

processes of interest to scientists and engineers. The analysis of PDEs has had a

tremendous impact on society by enabling our understanding of thermal, electrical,

fluidic and mechanical processes. However, the study of PDEs is often approached

with methods that do not allow for rigorous guarantees that a system satisfies com-

plex design objectives. In contrast, formal methods have recently been developed

to allow the formal statement of specifications, while also developing analysis tech-

niques that can guarantee their satisfaction by design. In this dissertation new design

methodologies are introduced that enable the systematic creation of structures whose

mechanical properties, shape and functionality can be time-varying.

A formal methods formulation and solution to the tunable fields problem is first

introduced, where a prescribed time evolution of the displacement field for different

spatial regions of the structure is to be achieved using boundary control inputs. A

spatial and temporal logic is defined that allows the specification of interesting prop-

erties in a user-friendly fashion and can provide a satisfaction score for the designed
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inputs. This score is used to formulate an optimization procedure based on Mixed

Integer Programming (MIP) to find the best design.

In the second part, a sampling based assumption mining algorithm is introduced,

which is the first step towards a divide and conquer strategy to solve the tunable fields

problem using assume-guarantee contracts. The algorithm produces a temporal logic

formula that represents initial conditions and external inputs of a system that satisfy

a goal given as a temporal logic formula over its state. An online supervised learning

algorithm is presented, based on decision tree learning, that is used to produce a

temporal logic formula from assumption samples.

The third part focuses on the tunable constitutive properties problem, where the

goal is to create structures satisfying a stress-strain response by designing their geom-

etry. The goal is represented as a logic formula that captures the allowed deviation

from a reference and provides a satisfaction score. An optimization procedure is used

to obtain the best geometric design.
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Chapter 1

Introduction

Partial differential equations (PDEs) model nearly all of the physical systems and

processes of interest to scientists and engineers. Some well-known examples include

the Navier-Stokes equation for fluid mechanics, the Maxwell equations for electro-

magnetics, the Schrödinger equation for quantum mechanics, the heat equation and

the wave equation. The analysis of these and other PDEs has had a tremendous

impact on society by enabling our understanding of thermal, electrical, fluidic and

mechanical processes.

While a mature field, the study of PDEs is often approached through simula-

tions in which approximate models obtained through spatio-temporal discretization

techniques, such as the Finite Element Method (FEM) (Hughes, 2000), are solved

numerically. These methods, however, do not allow for rigorous guarantees that a

system satisfies a complex specification. Other approaches generalizing classic Ordi-

nary Differential Equations (ODEs) tools such as Lyapunov analysis and backstepping

(Krstic and Smyshlyaev, 2008) do provide some guarantees and can be used to obtain

boundary control strategies for a wide variety of PDEs. However, they are restricted

to classical control objectives such as stabilization and cost optimization (Meurer and

Kugi, 2009).

The formal statement of specifications and the development of analysis techniques

that can guarantee their satisfaction by design has been the main focus of the formal

methods field. During the past decades, many specification languages have been de-
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fined, such as Linear Temporal Logic (LTL) (Gerth et al., 1996) and Signal Temporal

Logic (STL) (Donzé and Maler, 2010). Originally, these logics have been applied

to the study of finite systems, although more recently abstraction procedures have

been developed to reduce problems with ODEs to finite models (for example through

state space discretization (Kloetzer and Belta, 2008) or mixed-integer linear program

(MILP) encodings (Raman et al., 2014)). However, these techniques cannot be im-

mediately applied to the analysis of PDEs due to the lack of spatial information in

the formal language. This issue was first addressed in (Grosu et al., 2009) in the con-

text of spatially distributed systems, which can be viewed as PDEs in a discretized

spatial domain. In their work, the authors view the system state as an image and

define a formal language with explicit spatial information called Linear Superposi-

tion Logic (LSSL) based on quadtrees, a tree-based abstraction of the system. In

(Bartocci et al., 2016), a variant of LSSL with quantitative semantics, Tree Spatial

Superposition Logic (TSSL), is used for (steady-state) pattern synthesis in reaction

diffusion systems, while in (Haghighi et al., 2015), a new formal language combining

TSSL and STL, Spatial Temporal Logic (SpaTeL), allows the synthesis of dynamical

patterns. The specification of patterns in these logics is difficult, however, and ma-

chine learning techniques are needed in order to obtain logic formulas corresponding

to a set of examples of the desired pattern, which is not always available or desirable

for some applications where the system behavior must be specified a priori. More

recently, a new spatio-temporal logic called STREL was introduced in (Ezio Bartocci

et al., 2017) to specify the behavior of mobile and spatially distributed Cyber-Physical

Systems.

One of the major drawbacks of these methods is the issue of scalability. Both of

the main approaches, automata and optimization, quickly become unfeasible when

the system dimension increases, which poses a problem when dealing with infinite-
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dimensional systems such as PDEs. In the case of optimization based techniques, a

recent trend has focused on decentralized synthesis and verification where the coupling

between subsystems is formally captured in Assume-Guarantee Contracts (AGCs)

(Sadraddini et al., 2017). However, the key assumption of monotonicity is not present

in PDE systems.

Besides classical problems that focus on the temporal evolution of the state of the

system, PDEs allow for a different kind of problems where the aim is to specify the

intrinsic behavior of the system through its so called constitutive response. In this

case, instead of designing boundary control inputs, the engineer is tasked with the

design of the geometry of a structure that exhibits the desired mechanical or thermal

properties (Bertoldi et al., 2008; Shim et al., 2013a). The traditional approach to this

problem, topology optimization (Bendsoe, 1989; Bendsoe and Sigmund, 1999; Clausen

et al., 2015; Deaton and Grandhi, 2014; Frei et al., 2005; Maute et al., 2015; Osanov

and Guest, 2016; Sigmund and Torquato, 1999; Sigmund and Maute, 2013; van Dijk

et al., 2013; Nanthakumar et al., 2015; Nanthakumar et al., 2016; Nanthakumar et al.,

2017; Ghasemi et al., 2017; Allaire et al., 2004; Wang et al., 2003; Picelli et al., 2018),

is not enough to tackle both geometric and material nonlinearity.

In this dissertation, we present the first formal methods approach to the design

of PDE systems. We first consider boundary control problems with spatio-temporal

specifications over the state of the system. Then, we make a start on tackling the

scalability issues of our approach. In the last part of the dissertation, we focus on the

design of structures and materials from specifications over their intrinsic mechanical

response.
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1.1 Control Synthesis for Partial Differential Equations from

Spatio-Temporal Specifications

In the first part of the dissertation, we extend STL to allow specifications over the

solutions of PDEs in such a way that both temporal and spatial properties can be

formally stated in a user-friendly manner. We call the resulting language Spatial-

STL or S-STL. Then, we formulate and solve the problem of synthesizing a boundary

control input for a PDE such that a property defined in S-STL is satisfied.

Our approach uses the FEM to approximate the trajectory of the PDE by convert-

ing the PDE, as is standard with the FEM (Hughes, 2000), to a system of ODEs. The

FEM is a well-established numerical method to obtain approximate numerical solu-

tions to PDEs, and is particularly well-suited to problems with complicated geometries

where exact solutions cannot be found. The state space of the resulting ODE system

represents the field values of the PDE at discrete locations, called nodes, obtained

after discretizing the domain. In the process of approximating the PDE trajectory

by the FEM model and then discretizing it both in space (considering only the values

at the nodes) and time, we define a conservative reformulation of the specification

that follows the same approximation and discretization steps. In order to account

for the approximation and discretization errors, we introduce correction terms in the

formula in such a way that all trajectories satisfying the corrected formula also satisfy

the original one. This procedure is similar to the syntactical re-writing rules for MTL

proposed in (Abbas et al., 2014) in order to automatically infer properties satisfied

in a derived system model (via simplification or implementation, for example) from

properties satisfied in the original model. Finally, we encode the resulting control

problem into a MILP following previously established methods.

This work is an extension of the conference version (Penedo et al., 2018), where

we presented the control synthesis problem for 1D linear PDEs. Here, we extend
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our framework to multidimensional PDEs and to allow some non-linearities in the

PDE, in particular non-linear constitutive relations that can be approximated well

with piecewise linear functions with few interpolation points. We also present a

corresponding verification problem and solve it using the same tools developed for the

synthesis problem. The performance of our approach has been greatly improved by

including an optional presolving step where an approximation to the MILP solution is

obtained first using a gradient-free optimization method and used as a starting point

for the MILP. This allows us to avoid in practice the exponential complexity of the

MILP solver.

1.2 Data Classification Using Signal Temporal Logic

In the second part of the dissertation, we momentarily deviate from the PDE theme

and introduce a framework for the inference of timed temporal logic properties from

data. The relevance to the rest of the dissertation comes from its use as part of

a divide an conquer approach to the control synthesis problem for PDEs already

mentioned.

One of the main problems in machine learning is the so called two-class classifi-

cation problem. In this setting, the goal is to build a classifier that can distinguish

objects belonging to one of two possible classes. This problem is of fundamental

importance because its solution leads to solving the more general multi-class prob-

lem (Ripley, 1996). Furthermore, it can be directly used in the context of anomaly

detection, where the objective is to find patterns in data that do not conform to the

expected behavior. These non-conforming patterns are often referred to as anomalies

or negatives, whereas the normal working conditions are usually referred to as targets

or positives. Given the importance of this problem and its broad applicability, it has

been the topic of several surveys (Isermann, 2006; Chandola et al., 2009).
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A specific formulation of the two-class problem is determined by several factors

such as the nature of the input data, the availability of labels, as well as the constraints

and requirements determined by the application domain (Chandola et al., 2009). In

this work, we deal with data in form of finite time series, called signals or traces,

and we suppose that the labels of these traces are available. That is, the true class

of each trace is known, either positive or negative, and this information is exploited

during the classifier construction phase (supervised learning). We tackle the two-class

classification problem by bringing together concepts and tools from formal methods

and machine learning. Our thesis is that a formal specification of the normal working

conditions can be gleaned directly from execution traces and expressed in the form of

STL formulas. The inferred formulae can then be applied directly as data classifiers

for new traces. In this context, some work has been initially done to optimize the

parameters of a formula for a given, fixed, formula structure (Jin et al., 2015; Asarin

et al., 2012; Yang et al., 2012). Kong et. al. (Kong et al., 2014; Jones et al., 2014)

were the first to propose an algorithm to learn both the formula structure and its

parameters from data and called this approach temporal logic inference (TLI). This

approach, while retaining many qualities of traditional classifiers, presents several

additional advantages. First, STL formulas have precise meaning and allow for a rich

specification of the normal behaviour that is easily interpretable by humans. Second,

anomaly detection methods commonly applied to time series data are often model-

based, i.e., they require a good model of the system running alongside the physical

system (Isermann, 2006). Third, classical machine learning methods are often over

specific to the task. That is, they focus exclusively on solving the classification

problem but offer no other insight on the system where they have been applied. On

the contrary, TLI fits naturally as a step in the system’s design workflow and its

analysis and results can be employed in other phases.
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In this work, which we presented in (Bombara et al., 2016), we propose a decision-

tree based framework for solving the two-class classification problem involving signals

using STL formulas as data classifiers. We refer to it as framework because we are

not just proposing a single algorithm but a class of algorithms. Every algorithm

produces a binary decision tree which can be translated to an STL formula and

used for classification purposes. Each node of a tree is associated with a simple

formula, chosen from a finite set of primitives. Nodes are created by finding the best

primitive, along with its optimal parameters, within a greedy growing procedure. The

optimality at each step is assessed using impurity measures, which capture how well

a primitive splits the signals in the training data. The impurity measures described

here are modified versions of the usual impurity measures to handle signals, and were

obtained by exploiting the robustness degree concept (Donzé and Maler, 2010). Our

novel framework presents several advantages. In particular, the proposed incremental

construction procedure requires the optimization of a small and fixed number of

primitives at each node. Moreover, the number of objects to be processed decreases

at each iteration. These two features greatly improve the execution time and the

accuracy compared to the algorithms proposed in (Kong et al., 2014; Jones et al.,

2014).

1.3 Assume-Guarantee Contracts and Assumption Mining

In order to address the scalability issues of our optimization based approach discussed

in the first part, we focus on adapting existing AGC based approaches to distributed

control of monotone systems (Sadraddini et al., 2017) to relax the monotonicity as-

sumption. As a first step towards an AGC based approach to distributed control

of non-monotone systems, we propose a sampled based assumption mining algorithm

that leverages the STL inference framework introduced earlier. Assumption mining is
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by itself an interesting problem that can provide the means to identify failure modes

and determine the limits of safe operation of a system. In this case, the acceptable be-

havior of the system is encoded as a logical formula and we seek a formula describing

the largest set of initial states and external disturbances for which the system satis-

fies the specification. The problem has been previously studied for the synthesis of

discrete controllers from temporal specifications (Li et al., 2011) and in the particular

case of monotone systems (Kim et al., 2016).

We build an approximation of the assumption set iteratively using a process similar

to (Kim et al., 2016), with the current approximation represented as an STL formula

inferred from samples. The precision of the approximation can be controlled by a

parameter. We prove the algorithm finishes in finite time and the resulting formula

can be used to reject all invalid assumptions at the cost of being conservative.

1.4 Constitutive Property Design for Meta-Materials

Imagine the ability to, given a user-specified mechanical behavior, systematically

pattern a structure to produce the desired behavior. For example, can we tailor

the features of a material to endow it a desired constitutive response? Can we give

an elastic material a tunable, effective yield point, or make it strain harden at a

specified amount of displacement? This response to loading, whether being ductile

or brittle, strain hardening or softening, strong or weak, is found in the stress–strain

curve, which serves as a fundamental piece of information that describes the global

mechanical properties of structures and materials.

All of the above examples fall into a larger category of desired structural mechani-

cal response called designer matter (Reis et al., 2015; Bertoldi et al., 2017; Kochmann

and Bertoldi, 2017). In designer matter, structural patterning is used to develop

structures or metamaterials that exhibit unique properties (negative Poisson’s ratio,
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negative compressibility, negative thermal expansion, etc) (Yu et al., 2018). Despite

these recent advances, we still lack the systematic ability to design a material or

structure that will satisfy arbitrary, user-defined sets of material properties.

Designing structures that provide desired mechanical or material properties in re-

sponse to applied loads has traditionally been done using topology optimization (Bend-

soe, 1989; Bendsoe and Sigmund, 1999; Clausen et al., 2015; Deaton and Grandhi,

2014; Frei et al., 2005; Maute et al., 2015; Osanov and Guest, 2016; Sigmund and

Torquato, 1999; Sigmund and Maute, 2013; van Dijk et al., 2013; Nanthakumar et al.,

2015; Nanthakumar et al., 2016; Nanthakumar et al., 2017; Ghasemi et al., 2017; Al-

laire et al., 2004; Wang et al., 2003; Picelli et al., 2018), which attempts to determine

the optimal geometry and material distribution of a body subject to well-defined con-

straints, or design variables. While topology optimization has been widely used to

design structures with pre-determined properties, it is best-suited for determining a

fixed structure that exhibits static, time-independent properties based on linear elas-

tic material properties. Other works have developed topology optimization techniques

to account for geometric (Gea and Luo, 2001; Bruns and Tortorelli, 2001; Bruns and

Tortorelli, 2003; Wang et al., 2014; Buhl et al., 2000) and material (Maute et al.,

1998; Swan and Kosaka, 1997; Jung and Gea, 2004; Zhang et al., 2017) nonlinearity,

and also inertial effects (Alberdi and Khandelwal, 2019; Filipov et al., 2016; Lavan,

2019; Nakshatrala and Tortorelli, 2015). However, it remains a significant challenge

to use topology optimization to design a structure, that exhibits a prescribed response

that must account for both geometric and material nonlinearity.

We propose a formal methods framework to formulate and solve the problem of

specifying the constitutive response of a structure and synthesizing its geometry so

that the specification is satisfied by design. We introduce a predicate logic tailored to

the description of interesting constitutive properties of a material, as well as show how
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to adapt S-STL for the same purpose. Both logics come equiped with a quantitative

robustness score that allows us to formulate an optimization procedure where different

geometric designs are modeled, simulated and scored, and a gradient-free optimization

algorithm is used to select the best design.

1.5 Contributions

In conclusion, the contributions of the dissertation are the following. In the first part

of the dissertation, Chapter 2, we propose a formal framework for the verification and

synthesis of boundary control inputs for PDE systems from spatio-temporal specifica-

tions. We applied this framework to 1D and 2D linear PDEs, as well as 1D non-linear

PDEs. In the second part of the dissertation, we focus on the first steps towards a

divide and conquer approach to the control synthesis problem of the first part. In

Chapter 3, we propose a decision tree approach to STL inference from labeled sam-

pled data and show its performance on the maritime security and automotive fields.

The inference algorithm is used in Chapter 4, where we present a sampled based

assumption mining algorithm for discrete time linear systems. We do not assume

monotonicity of the system, which makes the algorithm applicable to discretizations

of PDE systems. Finally, in Chapter 5 we present a formal methods framework for

the geometric design of structures from given constitutive response specifications.
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Chapter 2

Control Synthesis for Partial Differential

Equations from Spatio-Temporal

Specifications

In this chapter, we develop a framework for the verification and synthesis of boundary

control inputs in PDE systems from specifications that describe the temporal and

spatial behavior of the system. First, we define an appropriate formal language to

describe such specifications. Then, we reformulate the problem into an optimization

problem over discrete time finite dimensional systems. Finally, we encode the problem

as a Mixed Integer Linear Program (MILP).

Our framework is conservative, i.e., a valid solution may not be found if it is too

close to violating the specification. In order to find an MILP encoding, we require

linearity of the PDE, although we show how this can be relaxed for some forms

of nonlinearity. Examples in 1D, 2D, first and second order, and nonlinear PDEs

illustrating the performance of the framework are included.

2.1 Preliminaries

2.1.1 Finite Element Method

In this section we provide a summary of the Finite Element Method (FEM) (Hughes,

2000). For simplicity, we present the method applied to a heat equation over a one-

dimensional domain, although the same technique can be applied to other PDEs.
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Let Ω = (0, L) ⊂ R be an open interval representing the interior of a one-

dimensional rod of length L; ρ, c, κ > 0 constants denoting density, capacity and con-

ductivity of the rod’s material respectively; g = (g0, gL) ∈ R2 the (time-independent)

boundary conditions at each end of the rod; and u0 : Ω → R an initial value for the

temperature on the rod. The evolution of the temperature at each point in the rod

can be described by a function u : Ω̄× [0, T ]→ R, where T > 0 denotes the final time

and can be infinity and Ω̄ is the closure of Ω (which we call the spatial domain), such

that the following initial boundary value problem (IBVP) is satisfied:

ΣH(u0, g)



ρc
∂u

∂t
− κ∂

2u

∂x2
= 0, on Ω× (0, T ) ,

u(0, t) = g0,∀t ∈ (0, T ) ,

u(L, t) = gL,∀t ∈ (0, T ) ,

u(x, 0) = u0(x),∀x ∈ Ω .

(2.1)

An important aspect of the FEM is the creation of a weak formulation of the

governing PDEs in (2.1). Its purpose is to reduce the second order spatial derivative

of u in (2.1) to first derivatives so that low order (in this case, linear) polynomials

can be used to approximate the field value u. Let D be the set of sufficiently smooth

real-valued functions on Ω̄× (0, T ) such that all u ∈ D satisfy u(0, t) = g0, u(L, t) =

gL, ∀t ∈ (0, T ), and V a similar set of time independent functions such that all w ∈ V

satisfy w(0) = w(L) = 0. The problem is to find u ∈ D such that for all w ∈ V ,∫
Ω

∂w

∂x
κ
∂u

∂x
dΩ +

∫
Ω

wρc
∂u

∂t
dΩ = 0 ,

∫
Ω

wρcu(·, 0)dΩ =

∫
Ω

wρcu0dΩ .

(2.2)

We now obtain an approximate solution to the weak formulation by considering (2.2)

with u and w in subspaces of D and V . Let {xi}n+1
i=0 , where x0 = 0, xn+1 = L, xi ∈
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Ω, i = 1, ..., n, be a partition of Ω̄. Let di(t), i = 0, ..., n+ 1 represent the temperature

of the rod at node xi, with d0(t) = g0, dn+1 = gL and let d = (d1, ..., dn)′ ∈ Rn. We

define the following linear node shape function matrices for i = 0, ..., n+ 1:

Ni(x) =


x−xi−1

xi−xi−1
i > 0, x ∈ [xi−1, xi] ,

xi+1−x
xi+1−xi i < n+ 1, x ∈ [xi, xi+1] ,

(2.3)

which results in the following linear interpolation of the field variable u in terms of

its nodal values d:

ud(x, t) =
n+1∑
i=0

Ni(x)di(t) . (2.4)

Consider the subspaces Dh ⊂ D and V h ⊂ V of linear interpolations defined

above and time-invariant interpolations respectively. It can be shown that ud(x, t) is

a solution of the weak formulation over the sets Dh and V h, where d evolves according

to the following linear system:

ΣH
FEM(u0, g)


Mḋ+Kd = F (g) ,

di(0) = u0(xi), i = 1, ..., n .
(2.5)

In the above, M,K and F are the mass, stiffness and external force matrices respec-

tively, whose specific form depend on the partition and the parameters of the PDE.

In general, M can be considered diagonal and K is a banded matrix, in this specific

PDE having bandwidth 3. In general, we will denote a PDE by Σ(...) and we will

call ΣFEM(...) the FEM system corresponding to a PDE system Σ(...).

2.1.2 Signal Temporal Logic

Let R be the set of real numbers. For t ∈ R, we denote the interval [t,∞) by

R≥t. We use S = {s : R≥0 → Rn} with n ∈ N to denote the set of all continuous

parameterized curves in the n-dimensional Euclidean space Rn. In this paper, an
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element of S is called a signal and its parameter is interpreted as time. Given a signal

s ∈ S, the components of s are denoted by si, i ∈ {1, . . . , n}. The set F contains

the projection operators from a signal s to one of its components si, specifically

F = {fi : Rn → R, fi(s) = si, i = {1, . . . , n}}. The suffix at time t ≥ 0 of a signal is

denoted by s[t] ∈ S and it represents the signal s shifted forward in time by t time

units, i.e., s[t](τ) = s(τ + t) for all τ ∈ R≥0.

The syntax of Signal Temporal Logic (STL) (Maler and Nickovic, 2004) is defined

as follows:

φ ::= > | pf(x)≤µ | ¬φ | φ1 ∧ φ2 | φ1U[a,b)φ2

where > is the Boolean true constant; pf(x)≤µ is a predicate over Rn defined by

the function f ∈ F and µ ∈ R of the form pf(x)≤µ(x) = f(x) ≤ µ; ¬ and ∧ are

the Boolean operators negation and conjunction; and U[a,b) is the bounded temporal

operator until. We use ⊥ to denote the Boolean false constant.

The semantics of STL is defined over signals in S recursively as follows (Maler

and Nickovic, 2004):

s[t] |= > ⇔ >

s[t] |= pf(x)≤µ ⇔ (f(s(t)) ≤ µ)

s[t] |= ¬φ ⇔ ¬(s[t] |= φ)

s[t] |= (φ1 ∧ φ2) ⇔ (s[t] |= φ1) ∧ (s[t] |= φ2)

s[t] |= (φ1U[a,b)φ2) ⇔ ∃tu ∈ [t+ a, t+ b) s.t.
(
s[tu] |= φ2

)
∧
(
∀t1 ∈ [t, tu) s[t1] |= φ1

)
A signal s ∈ S is said to satisfy an STL formula φ if and only if s[0] |= φ. We extend

the type of allowed inequality predicates in STL to s[t] |= pf(x)>µ ≡ s[t] |= ¬pf(x)≤µ.

Thus, predicates are defined in this paper by a function f ∈ F , a real number µ ∈ R
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and an order relation ∼∈ {≤, >}. The other Boolean operations (i.e., disjunction,

implication, equivalence) are defined in the usual way. Also, the temporal operators

eventually and globally are defined as F[a,b)φ ≡ >U[a,b)φ and G[a,b)φ ≡ ¬F[a,b)¬φ,

respectively.

In addition to Boolean semantics defined above, STL admits quantitative seman-

tics (Donzé and Maler, 2010; Fainekos and Pappas, 2009), which is formalized by the

notion of robustness degree. The robustness degree of a signal s ∈ S with respect to

an STL formula φ at time t is a function r(s, φ, t) and is recursively defined as

r(s,>, t) = r>

r(s, pf(x)≤µ, t) = µ− f(s(t))

r(s,¬φ, t) = − r(s, φ, t)

r(s, φ1 ∧ φ2, t) = min{r(s, φ1, t), r(s, φ2, t)}

r(s, φ1U[a,b)φ2, t) =

sup
tu∈[t+a,t+b)

{
min

{
r(s, φ2, tu), inf

t1∈[t,tu)
{r(s, φ1, t1)}

}}
where b > a > 0 and r> ∈ R≥0 ∪ {∞} is a large constant representing the maximum

value of the robustness. Note that a positive robustness degree r(s, φ, 0) of a signal s

with respect to a formula φ implies that s satisfies φ (in Boolean semantics). In the

following, we denote by r(s, φ) the robustness degree r(s, φ, 0) at time 0. Robustness

can be extended to the derived predicates and operators as follows:

r(s, pf(x)>µ, t) = f(s(t))− µ

r(s, φ1 ∨ φ2, t) = max{r(s, φ1, t), r(s, φ2, t)}

r(s,F[a,b)φ, t) = sup
tf∈[t+a,t+b)

{r(s, φ, tf )}

r(s,G[a,b)φ, t) = inf
tg∈[t+a,t+b)

{r(s, φ, tg)}
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Moreover, the interpretation of robustness degree as a quantitative measure of satis-

faction is justified by the following proposition from (Donzé et al., 2013).

Proposition 2.1. Let s ∈ S be a signal and φ an STL formula such that r(s, φ) > 0.

All signals s′ ∈ S such that ‖s− s′‖∞ < r(s, φ) satisfy the formula φ, i.e., s′ |= φ.

As an example, consider the temperature at the end of a rod to be s(t) = 2t, and

the specification φ = G[1,2]s > 0.5. We have s |= φ, since s(t) > 0.5, ∀t ∈ [1, 2] and

robustness r(φ, s, 0) = 0.5 since mint∈[1,2](s(t)− 0.5) = 0.5.

2.2 Signal Temporal Logic for PDEs

In order to define specifications over the trajectories of PDEs, we extend regular STL

using the following set of predicates: let Λ be a set of predicates over a set Ω̄, where

each predicate λ ∈ Λ is defined as a tuple (Qλ, Xλ, µλ, Dλ), and represented using the

syntax Qλx ∈ Xλ : Dλu(x)− µλ(x) > 0, where:

• Qλ ∈ {∀,∃} is the spatial quantifier,

• Xλ ⊆ Ω̄ is the spatial domain of the predicate and we require it to be a closed

set,

• µλ : Xλ → R is a continuous and differentiable function representing the refer-

ence profile, and

• Dλ ∈ { d
i

dxi
}i=0,1,... is a differential operator, with d0

dx0
= id the identity.

We consider STL formulas with the usual syntax and semantics over the set of

predicates Λ, which we call Spatial-STL (S-STL). The satisfaction of a predicate

with respect to a continuous-time signal u : Ω̄ × [0, T ] → R at time t ∈ R is defined

as u[t] |= λ ⇐⇒ Dλu(x, t) − µλ(x) > 0 for all x ∈ Xλ if Qλ = ∀ or for some

x ∈ Xλ otherwise. We define the quantitative semantics as before with r(λ, u, t) =



17

minx∈Xλ(Dλu(x, t) − µλ(x)) if Qλ = ∀ and r(λ, u, t) = maxx∈Xλ(Dλu(x, t) − µλ(x))

otherwise. For convenience, we define syntactic sugar for predicates with the opposite

inequality using the following equivalence: ∀x ∈ X : Du(x) − µ ≤ 0 ≡ ¬∃x ∈ X :

Du(x)− µ > 0, and similarly for an existential predicate.

Example 2.1. Consider a metallic rod of 100 mm. The temperature at one end of the

rod is fixed at 300 K, while a heat source is applied to the other end. The temperature of

the rod follows a heat equation similar to (2.1). We want the temperature distribution

of the rod to be within 3 K of the linear profile µ(x) = x
4

+ 300 at all times between 4

and 5 seconds in the section between 30 and 60 mm. Furthermore, the temperature

should never exceed 345 K at the point where the heat source is applied (x = 100). We

can formulate such a specification using the following S-STL formula:

φex =G[4,5]

(
(∀x ∈ [30, 60] : u(x)− (

x

4
+ 303) < 0)∧

(∀x ∈ [30, 60] : u(x)− (
x

4
+ 297) > 0)

)
∧

G[0,5](∀x ∈ [100, 100] : u(x)− 345 < 0) .

(2.6)

Throughout this paper, we will use the notation S(...) |= ψ to denote that the

trajectory of system S (either a PDE system or its corresponding FEM system) with

initial value s0 and boundary conditions g satisfies formula ψ (either in regular STL

or in S-STL).

2.3 Problem Formulation and Approach

Let ∂Ω be the boundary of Ω. We consider ∂Ω to be partitioned in four regions

{∂Ωd, ∂Ωn, ∂ΩD, ∂ΩN}. Let u(x, t) : Ω̄× [0, T )→ Rn be the state of a system evolving

according to the IBVP Σ(u0, gd, gn, vD, vN):
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Σ(...)



f(x, t, u,
∂u

∂t
,
∂u

∂xi
, ...) = 0, on Ω× (0, T ) ,

u(x, t) = gd(x, t),∀x ∈ ∂Ωd,∀t ∈ (0, T ) ,

∂u

∂n
(x, t) = gn(x, t),∀x ∈ ∂Ωn,∀t ∈ (0, T ) ,

u(x, t) = vD(x, t),∀x ∈ ∂ΩD,∀t ∈ (0, T ) ,

∂u

∂n
(x, t) = vN(x, t),∀x ∈ ∂ΩN ,∀t ∈ (0, T ) .

(2.7)

In the above, f is a function of space, time, state and all state derivatives, n is the

normal vector to ∂Ω, gd and gn are the Dirichlet and Neumann prescribed boundary

conditions respectively, and vD and vN are the Dirichlet and Neumann boundary

control inputs respectively. We will use Σ to refer to the system given by (2.7),

including the partition of ∂Ω, with unspecified initial value and boundary conditions.

Problem 2.1 (Boundary Control Synthesis Problem). Given a PDE Σ, an initial

value u0, prescribed boundary conditions gd and gn, an S-STL formula ψ over a set

of predicates Λ, and admissible control sets VD and VN , synthesize control inputs

vD ∈ VD and vN ∈ VN such that the trajectory of Σ(u0, gd, gn, vD, vN) satisfies ψ.

In the above formulation, the admissible control inputs are given in their most

general form as sets of allowed control functions (note that from (2.7), vD : ∂ΩD ×

(0, T ) → Rn and vN : ∂ΩN × (0, T ) → Rn). In practice, they are described in terms

of control inputs constraints, such as vD(x, t) < 100,∀x ∈ ∂ΩD,∀t ∈ (0, T ), as well

as assumptions on the form of the function, such as piecewise affine in t and x. We

also make the following assumptions: the function f in (2.7) is linear (we will relax

this assumption in Sec. 2.7), and only a finite number of derivatives of u appear;

and the sets VD and VN are described as polytopes in the parameters of a linear

parameterization of the control inputs.

We solve Problem 2.1 by reformulating it into a synthesis problem for a discrete-

time linear system instead. This is done in three steps, described in Sec. 2.4, by
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Figure 2·1: Summary of our approach. The PDE model is discretized
in three steps to obtain a set of difference equations. The S-STL speci-
fication is rewritten following the same steps so that satisfaction in the
discretized model is preserved.

considering the FEM approximation to the real solution, a spatial discretization and a

temporal discretization. Then, we encode the resulting linear system and specification

in a MILP and solve for the control inputs that maximize the robustness with respect

to the discretized specification, which is described in Sec. 2.5.

2.4 Discretization of STL for PDEs

In this section we define a series of reformulations of an S-STL formula over Λ such

that satisfaction of each successive reformulation guarantees that of the previous

one. A diagram showing the hierarchy of the reformulations is shown in Fig. 2·1.

The theory developed in this section is stated for a general 1D PDE. In Sec. 2.6 we

provide the necessary changes to apply this framework to multi-dimensional PDEs.

We first reformulate the specification ψ so that we can work with the approxi-

mation given by ΣFEM . Recall that we denote as u(x, t) the trajectory of Σ1 and

ud(x, t) the piecewise linear approximation obtained by interpolating the trajectory

of ΣFEM . In the following, we assume the partition {xi}mi=1 is proposition preserving

with respect to the set of regions {Xi}mi=1
2. Suppose we are given an a priori bound,

1In what follows we use Σ to refer to Σ(u0, gd, gn, vD, vN ).
2I.e., the Xi sets are unions of the regions defined by the partition. This is well defined since the
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εi(x, t), for the pointwise difference between the ith derivative of the trajectory and

the FEM approximation, i.e., | ∂di
∂xi
u(x, t)− ∂di

∂xi
ud(x, t)| ≤ εi(x, t).

Definition 2.1. Let λ ∈ Λ be a predicate and let δ : Ω̄ → R be a continuous and

differentiable function. The perturbation of λ by δ, λδ, is the predicate given by the

tuple (Qλ, Xλ, µ
δ
λ, Dλ), where µδλ(x, u) = µλ(x, u) + δ(x).

Definition 2.2. Let ψ be an S-STL formula over Λ in negation normal form and

let δ = {δi}i=0,1,... be a set of continuous functions δi : Ω̄ → R. The conservative

correction of ψ by δ, ψδ, is an S-STL formula in negation normal form obtained by

substituting every predicate λ that appears in ψ in the following way:

• If λ is not preceded by a negation operator and Dλ = di

dxi
, then it is substituted

by λδi.

• Otherwise, it is substituted by λ−δi

We will also use Λδ to refer to the set of all δ and −δ corrections of predicates in

Λ.

Theorem 2.2. If ud |= ψδ, with δi(x) = maxt εi(x, t), then u |= ψ.

Proof. We only need to consider a predicate λ and its negation. Let i be the order of

the derivative Dλ. We have

| ∂
i

∂xi
u(x, t)− µλ(x)− ∂i

∂xi
ud(x, t) + µλ(x)| =

| ∂
i

∂xi
u(x, t)− ∂i

∂xi
ud(x, t)| ≤ δi(x) . (2.8)

Thus, ∂i

∂xi
u(x, t) − µλ(x) ≥ ∂i

∂xi
ud(x, t) − µλ(x) − δi(x), which proves the result for

ψ = λ. For ψ = ¬λ, note that satisfaction is equivalent to ∂i

∂xi
u(x, t) − µλ(x) < 0

for x quantified opposite to Qλ. Finally, from (2.8) we have ∂i

∂xi
u(x, t) − µλ(x) ≤

∂i

∂xi
ud(x, t)− µλ(x) + δi(x).

Example 2.2. Assume we obtain a bound δ0(x) = 0.25 for the system ΣH described

in Ex. 2.1 and its FEM approximation. Consider the same specification φex defined

Xi sets are closed and there are a finite number of them. In higher dimensions, we also require the
Xi to be are polytopes.
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in the example. The perturbed specification, φδex is then:

φδex =G[4,5]

(
(∀x ∈ [30, 60] : u(x)− (

x

4
+ 303− 0.25) < 0)∧

(∀x ∈ [30, 60] : u(x)− (
x

4
+ 297 + 0.25) > 0)

)
∧

G[0,5](∀x ∈ [100, 100] : u(x)− 345− 0.25 < 0) .

(2.9)

If the FEM approximation to ΣH satisfies φδex, we can conclude ΣH satisfies φex.

Theorem 2.2 gives us a way to conservatively solve Problem 2.1 using the ap-

proximation obtained from ΣFEM . However, we still need to deal with continuous

functions in continuous time. Our next step will be to reformulate the specification

ψδ into an STL formula that can be checked against the trajectory of ΣFEM , i.e., d(t).

Let Λδ
FEM = {αλ,e|λ ∈ Λδ, e ∈ Eλ} ∪ {βλ,j|λ ∈ Λδ, j ∈ Jλ, Dλ = id}, where

Eλ = {e|[xe, xe+1] ⊆ Xλ}, Jλ = {j|xj ∈ Xλ, [xj−1, xj] 6⊆ Xλ, [xj, xj+1] 6⊆ Xλ}, and

satisfaction of αλ,e and βλ,j by a continuous-time signal d : [0, T ] → Rn is defined in

the following way:

d[t] |= αλ,e ⇐⇒ Dλu
d(xme , t)− µλ(xme ) > 0 , (2.10)

d[t] |= βλ,j ⇐⇒ dj(t)− µλ(xj) > 0 , (2.11)

where xme = xe+xe+1

2
is the midpoint of element e. Note that Dλu

d(xme , t) is a function

of d(t). The α predicates simplify a predicate λ so that only a representative value

(the midpoint) is checked at each element. The β predicates are needed in those cases

where Xλ is a single point. The robustness degree for these predicates is defined as

in Sec. 2.1.2. Note that this set of predicates includes the perturbations defined in

Def. 2.2. We define perturbations of predicates in Λδ
FEM by a real number k in a

manner analogous to Def. 2.1, and we denote it as αk.

Definition 2.3. The STL formula over Λδ
FEM , ψδ,ηFEM , corresponding to an S-STL
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formula in negation normal form, ψδ, over Λδ, with η = {ηi}i=0,1,..., ηi : Ω̄ → R, is a

formula obtained by substituting every predicate λ in ψδ by the formula
⊕

e∈Eλ γλ,e ⊕⊕
j∈Jλ βλ,j, where ⊕ = ∧ if Qi = ∀ and ⊕ = ∨ otherwise, and γλ,e is defined as the

following STL formula:

• If λ is not preceded by a negation operator, then γλ,e = α
−kλe
λ,e .

• Otherwise, γλ,e = α
kλe
λ,e.

In both cases, for Dλ = di

dxi
and le = xe+1 − xe,

kλe =
le
2

(
max

c∈[xe,xe+1]
|µ′λ(c)|+ max

c∈[xe,xe+1]
ηi(c)

)
. (2.12)

Theorem 2.3. If d |= ψδ,ηFEM , with ηi(x) ≥ maxt |∂
i+1ud

∂xi+1 (x, t)|, then ud |= ψδ.

Proof. We only need to consider a predicate λ and its negation. We assume Qλ = ∀,
the other case is similar. Let Xλ = [xa, xb] and i be the order of the derivative

Dλ. First note that satisfying λ is equivalent to satisfying all predicates of the set

{(Qλ, [xe, xe+1], µλ, Dλ)|e ∈ Eλ}. For any e ∈ Eλ, let xm = xe+xe+1

2
, h = xe+1−xe

2
. For

x ∈ [xe, xe+1] we have:

| ∂
i

∂xi
ud(x, t)− µλ(x)− ∂i

∂xi
ud(xm, t) + µλ(x

m)| ≤

h max
c∈[xe,xe+1]

|µ′λ(c) +
∂i+1ud

∂xi+1
(c, t)| ≤

h

(
max

c∈[xe,xe+1]
|µ′λ(c)|+ max

c∈[xe,xe+1]
|∂

i+1ud

∂xi+1
(c, t)|

)
≤

h

(
max

c∈[xe,xe+1]
|µ′λ(c)|+ max

c∈[xe,xe+1]
ηi(c)

)
= Ke .

(2.13)

Then,

∂i

∂xi
ud(x, t)− µλ(x) ≥ ∂i

∂xi
ud(xm, t)− µλ(xm)−Ke =

Dλu
d(xm, t)− µλ(xm)−Ke , (2.14)

so d |= α−Keλ,e implies ud |= (Qλ, [xe, xe+1], µλ, Dλ) and the theorem holds for ψδ = λ.

To prove it for the negated predicate, we can follow an argument similar to the one

in the proof of Thm. 2.2.
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Example 2.3. Continuing with Ex. 2.2, assume we obtained the FEM approximation

using the partition {10i|i ∈ 0, ..., 10} and we found the bound η0(x) = 0.15. The

perturbed STL specification corresponding to ψδ is

φδ,ηex,FEM = G[4,5]

(
(y4 − 311.75− 0.25− 5 ∗ (0.25 + 0.15) < 0)∧
(y5 − 314.25− 0.25− 5 ∗ (0.25 + 0.15) < 0)∧
(y6 − 316.75− 0.25− 5 ∗ (0.25 + 0.15) < 0)∧
(y4 − 305.75− 0.25− 5 ∗ (0.25 + 0.15) > 0)∧
(y5 − 308.25− 0.25− 5 ∗ (0.25 + 0.15) > 0)∧
(y6 − 310.75− 0.25− 5 ∗ (0.25 + 0.15) > 0)

)
∧

G[0,5]

(
d11 − 345 < 0

)
, (2.15)

where ye = ud(xme ) = de+de+1

2
. If we prove satisfaction of φδ,ηex,FEM by ΣH

FEM , we can

conclude the interpolation satisfies φδex.

Finally, we reformulate the specification into an STL formula with discrete time

semantics that can be checked against the trajectory of a time discretization of ΣFEM

with time interval ∆t ∈ R>0. There are several options at this point: the simplest

one is to consider ΣFEM as a first order linear system (augmenting the state space if

needed) and define the time discretization as the following difference equation:

Σ∆t
FEM(d(0), g)


d̃k+1 = Ãd̃k + b̃(g) ,

d̃0 = d(0) ,
(2.16)

where Ã = eA∆t and b̃(g) = −eA∆tA−1(e−A∆t−I)b(g). Note that, in theory, d(k∆t) =

d̃k, ∀k ∈ N. However, in practice one needs to numerically compute the exponential

matrices in Ã and b̃, which introduces an approximation error difficult to control.

As an alternative, we can use any numerical integration algorithm with fixed time

step appropriate to the specific PDE system under study, several of which have been

thoroughly analyzed in the FEM literature, such as the Newmark family. Similar to
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the FEM approximation, assume we have a bound on the approximation error of the

integration algorithm, maxk |dj(k∆t)− d̃kj | ≤ εdj , j = 1, 2, ....

We define a conservative correction of ψδ,ηFEM by a real vector ν = (νy, νd), ψδ,η,νFEM ,

in a similar way to Def. 2.3, noting that, for Dλ = ∂i

∂xi
, the predicate γλ,e is perturbed

using the constant νyi,e and the predicate βλ,j is perturbed using the constant νdj .

We abuse the notation for STL formulas so that we can consider satisfaction of the

discrete time signal d̃. In particular, d̃[t] |= µ ⇐⇒ µ(d̃bt/∆tc) > 0.

Theorem 2.4. If d̃ |= ψδ,η,νFEM , with νdj ≥ ∆tmaxt |ḋj(t)| + εdj and νyi,e ≥
∆tmaxt | ddtD

iud(xme , t)|+Diuε
d
(xme ), then d |= ψδ,ηFEM .

Proof. Again we only need to consider a predicate and its negation. We will assume

the predicate is of the form γλ,e, as the predicate βλ,j is a particular case. Let i be

the order of the derivative in the predicate, Dλ = ∂i

∂xi
, and let k = bt/∆tc. First note

that the bound on the integration error εdj gives the following bound:

|Diud(xme , k)−Diud̃(xme )| ≤ Diuε
d

(xme ) =⇒

Diud(xme , k) ≥ Diud̃(xme )−Diuε
d

(xme ) .
(2.17)

Then, similar to the proof of Thm. 2.3, we have the following:

|Diud(xme , t)− γλ,e −Diud(xme , k) + γλ,e| =
|Diud(xme , t)−Diud(xme , k)| ≤

∆t max
t∈[k,k+1]

| d
dt
Diud(xme , t)| ≤

∆tmax
t
| d
dt
Diud(xme , t)| = Me .

(2.18)

Combining the bounds obtained in (2.17) and (2.18) we have:

Diud(xme , t)− γλ,e ≥ Diud(xme , k)− γλ,e −Me ≥

Diud̃(xme )− γλ,e −Me −Diuε
d

(xme ) , (2.19)

which proves the theorem for the positive predicate. To prove it for the negated

predicate, take the oposite bound for the absolute values in (2.17) and (2.18) and

combine them in a similar way to (2.19).
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Example 2.4. Continuing with Ex. 2.3, assume we discretize ΣH
FEM(u0, g) with per-

fect accuracy using the timestep ∆t = 0.005 and let ν = (0.5, 0.5, ...). The final

corrected specification is

φδ,η,νex,FEM = G[4,5]

(
(y4 − 311.75− 0.25− 5 ∗ (0.25 + 0.15) + 0.5 ∗ 0.005 < 0)∧
(y5 − 314.25− 0.25− 5 ∗ (0.25 + 0.15) + 0.5 ∗ 0.005 < 0)∧
(y6 − 316.75− 0.25− 5 ∗ (0.25 + 0.15) + 0.5 ∗ 0.005 < 0)∧
(y4 − 305.75− 0.25− 5 ∗ (0.25 + 0.15) + 0.5 ∗ 0.005 > 0)∧
(y5 − 308.25− 0.25− 5 ∗ (0.25 + 0.15) + 0.5 ∗ 0.005 > 0)∧
(y6 − 310.75− 0.25− 5 ∗ (0.25 + 0.15) + 0.5 ∗ 0.005 > 0)

)
∧

G[0,5]

(
d11 − 345 + 0.5 ∗ 0.005 < 0

)
, (2.20)

We can guarantee the satisfaction of φδ,ηex,FEM by ΣH
FEM if ΣH,∆t

FEM satisfies φδ,η,νex,FEM .

The main result in this work is a corollary previous theorems, which allows us to

solve Problem 2.1 by solving a control problem for discrete-time linear systems with

regular STL constraints:

Theorem 2.5. If Σ∆t
FEM |= ψδ,η,νFEM , with δ, η and ν defined as in Thms. 2.2 to 2.4 and

d0
i = u0(xi), i = 1, ..., n, with u0 an initial value for Σ, then Σ |= ψ.

Proof. From Thm. 2.4, if Σ∆t
FEM |= ψδ,η,νFEM , which is shorthand for d̃ |= ψδ,η,νFEM , then

d |= ψδ,ηFEM , with d the trajectory of ΣFEM . From Thm. 2.3, we now have ud |= ψδ.

Finally, from Thm. 2.2, we have u |= ψ, which means Σ |= ψ.

We can also obtain a bound for the robustness of the trajectory of Σ with respect

to the original specification by making the following observation:

Theorem 2.6. If u, ud, d and d̃ are trajectories of Σ, interpolation of ΣFEM , ΣFEM

and Σ∆t
FEM , respectively, and ψ is an S-STL formula over Λ, then the following in-

equality holds:

r(ψ, u, t) ≥ r(ψδ, ud, t) ≥ r(ψδ,ηFEM , d, t) ≥ r(ψδ,η,νFEM , d̃, t) . (2.21)
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Proof. Again, we only need to prove it for a predicate. Consider the following in-

equalities in the proofs of Thms. 2.2 to 2.4:

∂i

∂xi
u(x, t)− µλ(x) ≥ ∂i

∂xi
ud(x, t)− µλ(x)− δi(x) =

∂i

∂xi
ud(x, t)− µλ(x)− δi(x) ≥ Dλu

d(xm, t)− µλ(xm)− δi(x)−Ke =

Diud(xme , t)− γλ,e ≥ Diud̃(xme )− γλ,e −Me −Diuε
d

(xme ) .

(2.22)

Note that we have added the first correction term explicitly in the second inequality,

as predicates at that point include them implicitely. Each of the terms in these

inequalities is equal to the robustness of the corresponding formula with respect to

the trajectory, which proves the theorem for a positive predicate. For the negative

case, note that r(¬λ, u, t) = −r(λ, u, t) and that the inequalities above are flipped in

the case of negative predicates with the appropriate sign changes.

2.5 MILP Formulation of Control Synthesis

In this section, we solve Problem 2.1 by formulating an optimization problem using

the corrected STL specification defined in the previous section. Our formulation is

equivalent to an MILP, which we solve using an off-the-shelf solver such as Gurobi

(Gurobi Optimization, 2016). The optimization problem takes the following form:

rm = max r(ψδ,η,νFEM , d̃, 0)

s.t. d̃k+1 = Ãd̃k + b̃(g) ,

d̃0 = d(0) ,

vD ∈ VD, vN ∈ VN .

(2.23)

In the above, (2.16) should be substituted by the appropriate difference equations

resulting from the chosen ODE integration algorithm. After solving (2.23), if rm > 0,

then ψ is satisfied by the controlled system using as control inputs the optimal solution

for vD and vN . This optimization problem is clearly non-convex, due to the max and
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min operators present in the definition of robustness, and the objective function is

non-differentiable. However, we can apply the technique described in (Sadraddini

and Belta, 2015) to represent robustness as mixed-integer linear constraints. On the

other hand, the system dynamics are linear and our assumption on the shape of

the admissible control sets VD and VN implies that they can be encoded as linear

constraints. Therefore, (2.23) is a MILP. Also note that by using the robustness

degree as cost function, (2.23) is always feasible and a control input will be produced

even if it does not correspond to a satisfying trajectory. In this case, rm would be

negative and we can think of the resulting optimal values for vD and vN as best effort

inputs.

The computational time needed to solve a MILP grows exponentially with the

number of binary variables. In our encoding, we introduce one binary variable for

each argument to a min or max function. Thus, the number of binary variables

is proportional to the length of time intervals (in the discrete sense), the number

of boolean connectives in the original formula ψ and the length of the discretized

predicates obtained in Def. 2.3. In terms of parameters of the problem and solution,

the length of the discrete-time intervals is proportional to the length of the time

intervals in ψ and inversely proportional to ∆t; regarding the spatial discretization

of the predicates, its length is proportional to the size of the spatial domains and

inversely proportional to the size of the partition (i.e., the distance between two

nodes in the partition).

Note that in the optimization problem (2.23), the only decision variables present

are the ones encoding the control inputs. Given our assumptions, these variables will

almost always be real-valued and constrained to an interval. In the MILP formulation,

all other decision variables are introduced to encode the trayectory of the system

and the robustness with respect to the specification. Crucially, all integer decision
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variables are only needed to encode the robustness, and their values are completely

determined once a control input is selected. Given these observations, we can improve

the performance of the MILP solver by precomputing an approximation to the optimal

control inputs and use it as a starting point for the MILP solver. This approximation

can be computed using a gradient-free optimization algorithm such as differential

evolution (Storn and Price, 1997). From this approximation, the values of the MILP

decision variables can be inferred and used as a feasible starting solution, which

greatly improves the performance of the solver by allowing it to cut solutions with

worse robustness.

2.6 Extension to Multi-Dimensional PDEs

In this section we sketch how to extend our control synthesis framework to vector

fields in multi-dimensional domains, with a slight generalization of the spatial pred-

icates to allow linear functions of the state variables. The first step is to define an

appropriate extension of S-STL to handle the extra state dimensions and extra di-

rectional derivatives. Then, the specification is discretized following the same steps

defined in Sec. 2.4, using slightly modified correction terms. The PDE discretiza-

tion using the FEM follows the same principles as in the one-dimensional case, and

we refer the reader to (Hughes, 2000) for more details. Finally, the MILP has the

same formulation described in Sec. 2.5. A detail worth noting is the control inputs

are now potentially functions of space if we are to design a boundary control input

that is applied to a region in the boundary. The same assumption on the shape of

the admissible control sets as in one-dimensional problems is made. In what follows,

we assume u(x, t) : Ω̄ × [0, T ] → Rm is a vector field on Ω ⊂ Rn, with uj its jth

component.

Let D = {id, ∂
∂x1
, ..., ∂

∂xn
} be the set of partial spatial derivatives plus the identity
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operator, and let D∗ be the monoid over D with composition of operators. Finally,

let Dj, with D ∈ D∗ and j = 1, ...,m, be the operator defined as (Dju)(x, t) =

(Duj)(x, t). We define predicates in multi-dimensional S-STL as the following:

λ ≡ Qx ∈ X :
k∑
i=1

ai(D
ji
i u)(x)− µ(x) > 0 , (2.24)

where Q,X and µ are defined as in Sec. 2.2, a = (ai)
k
i=1 ∈ Rk is a vector of coefficients

and Di ∈ D∗. Note that, besides supporting a vector field u on a multi-dimensional

domain, the extended predicates allow linear functions of u and its derivatives. Multi-

dimensional S-STL formulas are defined over a set of extended predicates as described

in Sec. 2.2.

Discretization of multi-dimensional S-STL follows the same steps as the one-

dimensional case. However, the correction terms must be redefined. In order to

simplify the notation, we consider only one predicate λ defined as in (2.24).

• δ corrections in Thm. 2.2. Assume we have approximation error bounds |(Dji
i u)(x, t)−

(Dji
i u

d)(x, t)| ≤ ε
D
ji
i

(t) for all Dji
i that appear in λ. The multi-dimensional δ

perturbation of a predicate must be defined with µδ = µ(x)+‖a‖
√∑k

i=1(δ
D
ji
i

)2,

and δ
D
ji
i

= maxt εDjii
(t).

• η corrections in Thm. 2.3. The discretization scheme for predicates is identical

if we define as element midpoints, xme , the Chebyshev center of the element.

Let he be the Chebyshev radius of element e, and Xe ⊂ Ω̄ the region that

defines element e. The multi-dimensional η perturbation is defined now with

ke = he
(

maxc∈Xe ‖∇µ(c)‖ +
√
n‖a‖maxc∈Xe

√∑k
i=1

∑n
l=1(η ∂

∂xl
D
ji
i

(c))2
)
, with

ηDj being bounds on the partial derivatives of the FEM approximation, ηDj ≥

maxt |(Djud)(x, t)|.

• ν corrections in Thm. 2.4. In this case, we modify the perturbation constants to
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lye = ∆t‖a‖
√∑k

i=1(νy
e,D

ji
i

)2, with νy
e,D

ji
i

≥ maxt | ddt(D
ji
i u

d)(xme , t)|+(Dji
i u

εd)(xme )

and similarly for the ldj constant.

2.7 Extension to Non-Linear Equations

Much of the interesting physical phenomena seen in materials involve both material

and geometric nonlinearities. In this section, we discuss how the proposed approaches

can be adapted to deal with material nonlinearities. We discuss these phenomena in

the context of an elastodynamics problem (wave equation) for ease of exposition,

although similar concepts apply to other PDEs.

Material nonlinearities introduce nonlinear terms in the internal force term of the

PDE (e.g., the second term in first line of Equation (2.1)) via specific constitutive

equations. For example, for an elastodynamics problem using rubbery elastomeric

materials the material could be represented using the nonlinear Gent constitutive law,

instead of the usual Hooke’s law for linear elasticity. While the kinematic description

changes in the presence of these nonlinearities, what is essential is that the form of

the ODE that results from the FEM discretization of the PDE is the same. In the

case of the nonlinear wave equation, the FEM-discretized ODE retains the form:

ΣNL
FEM : Md̈ = f ext − f int(d) , (2.25)

where d are the displacements. In the linear case, the internal force is f int = Kd,

with K being the (constant) stiffness matrix. In the nonlinear case, the internal force

f int(d) is a nonlinear function of the displacements d (for example, f int(d) = K(d)d).

In our approach, the linearity assumption on the resulting ODE is a technical

requirement: the MILP encoding relies on this assumption. We propose to solve the

problem in the nonlinear case by approximating the system with a hybrid system in

the following way: suppose that we can define a polyhedral partition of the state space
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of the ODE system, {Di}i∈I , such that the system has a good linear approximation

at each region. We define a hybrid linear approximation of ΣNL
FEM as:

ΣL
FEM : Md̈ = f ext −Kid, d ∈ Di, i ∈ I , (2.26)

where Ki is related to the differential of f int inside Di.

Hybrid systems of this form admit MILP encodings (Bemporad and Morari, 1999).

However, the complexity of the optimization problem can explode very quickly even

for very simple examples if the encoding technique is applied naively. Consider for

example a simple nonlinearity in the wave equation where Hooke’s law σ = Eε, with

σ being the stress, E the Young’s modulus and ε the strain, becomes the piecewise

linear law:

σ = E1ε, ε ≤ εy ,

σ = E2ε, ε > εy ,
(2.27)

with εy the yield strain of the material and E1, E2 constants. When translating this

to the FEM system, we can say that each element is in one of two linear modes

described by one of the equations above. Thus, the full hybrid system is described

by 2number of elements modes. The MILP encoding for this system would use a number

of binary variables equals to the number of modes times the number of time steps,

which is a prohibitively large number. Instead of this naive approach, we propose an

implicit representation of the modes of the hybrid system, which reduces the necessary

number of binary variables per time step to just the number of elements.

In order to formulate this implicit representation, note that the stiffness matrix,

K(d), resulting from the FEM is constructed as follows:

K(d) =
m∑
j=1

Kj(d) , (2.28)

where Kj is the local stiffness matrix to element j and depends on the mode of
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the element as given by (2.27) when considered locally. The full ODE system then

becomes:

Md̈ = f ext −
m∑
j=1

Kj(d)d , (2.29)

where Kj(d) is either of the constant matrices K1
j or K2

j depending only on the values

of d at element j. This choice can be encoded in the MILP using only one binary

variable per element per time step, greatly improving the performance over explicitly

encoding each mode of the full system.

2.8 Verification for Sets of Initial Values and Boundary Con-

ditions

As a byproduct of our control synthesis framework, we also obtain a method for

the verification of S-STL properties in PDE systems. Let us consider that vD and

vN represent unknown boundary conditions instead of control inputs. A verification

problem can be formulated as follows:

Problem 2.2 (Set of boundary conditions verification). Given a PDE Σ, an initial

value u0, prescribed boundary conditions gd and gn, an S-STL formula ψ over a set of

predicates Λ, and unknown boundary conditions vD and vN constrained to be within

the sets VD and VN , respectively, check whether the trajectory of Σ(u0, gd, gn, vD, vN)

satisfies ψ for all vD ∈ VD and vN ∈ VN .

This problem can be solved by using a MILP formulation similar to (2.23). How-

ever, in this case the optimization objective is to minimize the robustness. Then,

if rm > 0 we guarantee that ψ is satisfied for all possible boundary conditions. A

similar procedure can be followed if we are interested in verifying that a specification

is met for all initial values of the PDE within a set.
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2.9 Case Study

In this section we solve Problem 2.1 for the heat equation example introduced ear-

lier in the paper. We also discuss the conservativeness of our approach as well as

the computational performance. We implemented our framework using Python 2.7,

Gurobi 7.0 as our MILP solver configured to use 10 threads and the differential evo-

lution implementation in scipy 0.17.1 with the default parameters and capped to a

maximum of 50 iterations. We ran our implementation in an Intel Core i7-5930K and

16GB RAM.

2.9.1 Heat Equation

We consider the specification described in Ex. 2.1. We assume the rod is made of

two different materials: the section from 30 to 60 mm is made of a material with

parameters Ea = 1500 · 103, ρa = 4.5 · 10−6 and ca = 0.38 · 109, while the rest of

the rod is made of a material with parameters Eb = 800 · 103, ρb = 4 · 10−6 and

cb = 0.466 · 109. The applied heat source appears in (2.5) as an additional force in the

right hand side, fnodal(t) = (0, ..., 0, U(t))T , with U(t) constrained to be continuous,

piecewise linear and U(t) ∈ [0, 106],∀t. We predefine the interpolation times for

U(t) to {0.5i|i = 0, 1, ...}. The rod starts at temperature 300 K at all points. We

partition the spatial domain into a uniform mesh of different sizes and integrate the

resulting FEM system using the trapezoidal rule with ∆t = 0.05. For simplicity, we

do not consider the integration error, and we approximate the ε, η, ν bounds by taking

100 samples of system trajectories with randomized control inputs, obtaining from

them approximate maximum spatial and time derivatives, and also the maximum

approximation error when considering the true system trajectory the one obtained

from an FEM model with 200 elements and ∆t = 0.005. This process is automatic

and takes less than 20 seconds.
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We used a 30 element mesh to synthesize a control input from the specification

φex, which produces a trajectory with robustness r(φex) ≥ 0.65. The control input

and snapshots of the temperature evolution are shown in Fig. 2·2, along with the

temperature profiles considered in φex (labeled A, B and C in the order they appear

in the formula) and a visualization of the total correction applied during the dis-

cretization steps. It took 6 seconds to solve the resulting MILP with 13741 variables,

664 of them binary, and 14386 constraints. Furthermore, we show in Fig. 2·2d the

relationship between the number of elements of the FEM partition and the conser-

vativeness and computational complexity of the method. Note that for a 10 element

mesh, the method fails to obtain a (provably) satisfying control input, and as quality

of the mesh improves, so does the bound on the robustness.

2.9.2 Verification Problem For Heat Equation

Continuing with the heat equation example, we now demonstrate how our method

can be used for verification. First, we consider the inputs obtained in the previous

section for the specification φex using a 30 element mesh and verify whether the

specification is satisfied for different mesh sizes. We show the robustness computed

using the specification with and without the corrections in Fig. 2·3a. Note how only

using a 20, 30, 40 or 50 element mesh we would verify the system as satisfying the

specification. Even though finer meshes are more precise, the inputs generated with a

coarser mesh do not necessarily produce a satisfying result when verified with a finer

mesh. However, Thm. 2.5 guarantees that the real system satisfies the specification,

as can be seen by the (close to) true robustness computed using a fine mesh and no

corrections.

We can also verify the specification against unknown but bounded conditions. For

example, using the previous set up, consider now that the inputs cannot be precisely

applied to the system but within some known tolerance. We show in Fig. 2·3b a
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(a) Snapshot at t = 0.0. (b) Snapshot at t = 4.5.

(c) Inputs for φex.

(d) Influence of mesh quality.

Figure 2·2: In Figs. 2·2a and 2·2b we show snapshots of the satisfying
trajectory for φex in black, with predicate profiles and their corrections
in solid and dashed lines respectively, except for the C profile, which is
shown as a single dash and dot. In Fig. 2·2c we show the synthesized
input. In Fig. 2·2d, we show the computing time (in black bars) and
lower bound of the robustness (in red dots) as we increase the number
of elements in the mesh.

lower bound on the robustness of the specification for different tolerances using a 30

element mesh. Again, a positive robustness bound signifies satisfaction. Solving the

verification problem took around 30 seconds for each one.

2.9.3 Elastic Wave Propagation

Consider a steel and brass rod of length L = 100 m, the section between 30 m and

60 m being brass, with densities ρst = 8 · 103 kg/m3, ρbr = 8.5 · 103 kg/m3 and Young’s
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(a) (b)

Figure 2·3: Verification results. On the left, robustness lower bounds
for a mesh of different size using fixed inputs obtained with a 30 element
mesh. On the right, robustness bound while allowing some tolerance
over the inputs.

modulus Est = 200 GPa, Ebr = 100 GPa, with one end fixed and a time-variant force

U(t) applied to the other end. Assume the rod is initially at rest. The displacement

u(x, t) of the rod obeys the following IBVP:

ΣM(0, U)



ρ
∂2u

∂t2
− E∂

2u

∂x2
= 0, on Ω× (0, T ) ,

u(0, t) = 0, ∀t ∈ (0, T ) ,

E
∂u

∂x
(L, t) = U(t), ∀t ∈ (0, T ) ,

u(x, 0) = 0, ∀x ∈ Ω ,

∂u

∂t
(x, 0) = 0, ∀x ∈ Ω .

(2.30)

Note that in this mixed material case, ρ = ρ(x) and E = E(x) are the density and

Young’s modulus of the rod at each point. We build an FEM approximation using a

uniform partition with 20 elements and integrate the resulting second order system

using the trapezoidal rule (Hughes, 2000) to obtain a time discretization with time
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interval ∆t = 2.5 · 10−3 s. We obtain approximate bounds for ε, η, ν as in Sec. 2.9.1.

We formulate a control synthesis problem where U(t) is a Neumann control in-

put constrained to be continuous, piecewise affine and U(t) ∈ [−5000 N, 5000 N],∀t.

Throughout this section, we predefine the interpolation times for U(t) to {0.1i|i =

0, 1, ...}. First, we formulate a specification where we require that the rod must be

stretched over a given profile for a period of time, then compressed for at least one

instant in a given interval, then a choice is given between holding the compressed

pattern or returning to the stretched one, and finally the stretched pattern must be

achieved within a time interval. Requirements where a material must be stretched

or compressed following a profile are important in manufacturing processes such as

forming. The resulting S-STL formula is the following:

φ1 =G[0.1,0.3](∀x ∈ [60, 90] : u(x)− µB > 0)∧

F[0.3,0.4](∀x ∈ [60, 90] : u(x)− µC < 0)∧(
G[0.45,0.5](∀x ∈ [60, 90] : u(x)− µC < 0)∨

G[0.45,0.5](∀x ∈ [60, 90] : u(x)− µB > 0)
)
∧

F[0.5,0.55](∀x ∈ [60, 90] : u(x)− µB > 0) ,

(2.31)

where µB = 0.005x·10−3+0.3 and µC = 0. The specific form of the target profiles was

selected considering the feasible shape changes the rod can achieve. The resulting U(t)

is shown in Fig. 2·4b, which corresponds to a trajectory with a robustness degree of

at least 1.226. We show a snapshot of the trajectory in Fig. 2·4a. It took 165 seconds

to solve the problem using a differential evolution presolving step and a MILP with

29345 variables, 1490 of them binary, and 32291 constraints.

We can also formulate a specification where a point in an interval of the rod must

be over a given profile for some time while the rod stays below a safe displacement

throughout another interval. An S-STL formula describing this specification is:
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(a) Snapshot at t = 0.5.
(b) Input for φ1.

Figure 2·4: Snapshot of the satisfying trajectory for φ1 and synthe-
sized control inputs. Trajectory is shown in black, predicate profiles in
solid colored lines and corresponding corrected profiles in dashed lines.

φ3 =G[0.2,0.3](∃x ∈ [50, 70] : u(x)− µB > 0)∧

G[0.0,0.3](∀x ∈ [60, 90] : u(x)− µC < 0) ,
(2.32)

where µB = 0.02x · 10−3 and µC = 2.75. The resulting inputs and a snapshot of the

trajectory is shown in Fig. 2·5. The trajectory has robustness degree of at least 0.037

and it took 301 seconds to solve the problem.

Finally, we consider a specification involving the strain, d
dx
u, of the system, where

the objective is to keep the strain in the brass section under a safe profile for some

time, and then increase it so that the material yields or breaks within a time window.

For this example we predefine U(0) = 0. The corresponding S-STL formula is the

following:

φ2 =G[0.1,0.4]

(
∀x ∈ [30, 60] :

d

dx
u(x)− µA < 0

)
∧

F[0.4,0.5]

(
∀x ∈ [30, 60] :

d

dx
u(x)− µC > 0

)
,

(2.33)

where µA = 2·10−5, µC = 3·10−5. The control input obtained is shown in Fig. 2·6b. It

corresponds to a trajectory with 8.51 · 10−6 robustness bound and it was synthesized

in 123 seconds. We show a snapshot of the trajectory in Fig. 2·6a.
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(a) Snapshot at t = 0.3.
(b) Input for φ3.

Figure 2·5: Snapshot of the satisfying trajectory for φ3 and synthe-
sized control inputs. Trajectory is shown in black, predicate profiles in
solid colored lines and corresponding corrected profiles in dashed lines.

(a) Snapshot at t = 0.48.
(b) Input for φ2.

Figure 2·6: Snapshot of the satisfying trajectory for φ2 and synthe-
sized control inputs. Trajectory is shown in black, predicate profiles in
solid colored lines and corresponding corrected profiles in dashed lines.

2.9.4 2D Beam

We consider now a 2D beam of length L = 16 m, width c = 1 m, Young’s modulus

E = 1 · 107 and Poisson’s ratio v = 0.3, initially at rest, assuming no body force and

following a 2D linear isotropic elasticity theory with boundary conditions given for

all t as follows:
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u1(0, y) = u2(0, y) = 0, y ∈ [0, c] ,

h(x, y) = (0, 0), x ∈ (0, L), y ∈ [0, c] ,

h2(L, y) = 0, y ∈ [0, c] ,

h1(L, y) =
y − .25

.25
U, y ∈ [.25, .45] ,

h1(L, y) =
(
1− y − .45

.25

)
U, y ∈ [.45, .75] ,

(2.34)

where U = U(t) is the compressive force applied at the free end of the beam and

h is the traction. The boundary conditions specify that the left end of the beam is

fixed and a force is applied to the right end, distributed so that the maximum force

is applied at y = 0.45 m, decaying linearly until y = 0.25 m and y = 0.75 m.

We want to synthesize an input force such that the beam buckles. For this specific

setup, we only need to specify the vertical displacement profile in part of the bottom

boundary. We formulate the following S-STL specification:

φ = G[3.45,4.05](A ∧B) ,

A = ∀x ∈ {x ∈ Ω|8 ≤ x1 ≤ 14, x2 = 0}(u2(x) > µA(x)) ,

B = ∀x ∈ {x ∈ Ω|8 ≤ x1 ≤ 14, x2 = 0}(u2(x) < µB(x)) ,

(2.35)

where µA and µB are the quadratic functions depicted in Fig. 2·7a (labeled A and B).

The specification states that the vertical displacement at part of the bottom boundary

must be within the two given profiles at all times between 3.45 s and 4.05 s. Note that

a specification defining the shape of a material such as this one can be automatically

constructed from a target shape plus a maximum allowed deviation.

We used a regular 8x4 9-node quadratic element mesh and integrated the second

order system using the trapezoidal rule with ∆t = 75 ms. The synthesized U(t) is

shown in Fig. 2·7d and corresponds to a trajectory with a robustness degree of at

least 13. We show snapshots of the evolution of the beam shape in Fig. 2·7. It took
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(a) Snapshot at t = 0.0. (b) Snapshot at t = 3.45.

(c) Snapshot at t = 4.05. (d) Input for φ.

Figure 2·7: Snapshots of the satisfying trajectory for φ and synthe-
sized input. The trajectory is shown as the deformation of the domain,
represented in black by the mesh used in the FEM. The predicate pro-
files are shown in colored lines.

5546 seconds to solve the problem.

2.9.5 Nonlinear Elastic Wave Propagation

Here we show a simple synthesis problem similar to the one presented in Sec. 2.9.3

with a nonlinear wave equation of they type described in Sec. 2.7 with the constitutive

law (2.27). In order to avoid numerical issues in the MILP, we use the following

unitless parameters for the equation: L = 10, ρ = 0.1, εy = 0.1, E1 = 100, E2 = 50.

The FEM approximation uses a uniform partition with 10 elements and the time

interval is ∆t = 0.01. For simplicity, we do not include any correction terms in



42

the specification. The Neumann control input U(t) is constrained to [−100, 100]

with interpolation times {0.5i|i = 0, 1, ...}. The target specification states that the

displacement must never exceed 0.5 in the interval [6, 10] and at some time between

0.1 and 0.2 the displacement should exceed a linear profile in the interval [4, 6]. The

corresponding S-STL formula is:

φ =G[0.0,0.2](∀x ∈ [6, 10] : u(x) < 0.5)∧

F[0.1,0.2](∀x ∈ [4, 6] : u(x) > 0.02u(x)− 0.07) .
(2.36)

The synthesized inputs are shown in Fig. 2·8, resulting in a trayectory with ro-

bustness 0.034. A snapshot of the displacement and strain when it satisfies the second

part of the specification is also shown in the figure. It took 8271 seconds to solve the

problem.
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(a) Snapshot at t = 0.0. (b) Input for φ.

(c) Snapshot at t = 0.19. (d) Strain at t = 0.19.

Figure 2·8: Snapshots of the satisfying trajectory of the nonlinear
wave equation for specification φ and synthesized input.
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Chapter 3

A Decision Tree Approach to Data

Classification using Signal Temporal Logic

In this chapter, we present a decision tree based framework for STL inference. The

dataset is given as a set of pairs of system traces and labels, where the labels indicate

whether the traces exhibit some desired behavior. Our method produces binary de-

cision trees that represent the inferred formula. Each node contains a test associated

with the satisfaction of a simple formula, chosen from a set of primitives by optimiz-

ing an impurity measure. We extend classical impurity measures with the concept

of STL robustness. Our framework is evaluated on anomaly detection problems in

maritime security and automotive scenarios.

3.1 Parametric Signal Temporal Logic

Parametric Signal Temporal Logic (PSTL) was introduced in (Asarin et al., 2012) as

an extension of STL, where formulae are parameterized. A PSTL formula is similar

to an STL formula, however all the time bounds in the time intervals associated with

temporal operators and all the constants in the inequality predicates are replaced by

free parameters. The two types of parameters are called time and space parameters,

respectively. Specifically, let ψ be a PSTL formula and np and nTL be the number

of predicates and temporal operators contained in ψ, respectively. The parameter

space of ψ is Θ = Π × T , where Π ⊆ Rnp is set of all possible space parameters and

T = T1×. . . TnTL is the set of all time parameters, where Ti = {(ai, bi) ∈ R2
≥0 | ai ≤ bi}
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for all i ∈ {1, . . . , nTL}. Conversely, if ψ is a PSTL formula, then every parameter

assignment θ ∈ Θ induces a corresponding STL formula φθ, where all the space and

time parameters of ψ have been fixed according to θ. This assignment is also referred

to as a valuation θ of ψ. For example, given ψ = G[a,b)(s1 ≤ c) and θ = [2.5, 0, 1], we

obtain the STL formula φθ = G[0,1)(s1 ≤ 2.5).

3.2 Problem formulation

We wish to find an STL formula that separates traces produced by a system that

exhibit some desired property, such as behaving normally, from other traces of the

same system. Formally, let C = {Cp, Cn} be the set of classes, with Cp for the positive

class and Cn for the negative class. Let si be an n-dimensional signal, si : R≥0 → Rn,

and let li ∈ C be its label. We consider the following problem:

Problem 3.1 (Two-Class Classification). Given a set of labeled signals {(si, li)}Ni=1,

where li = Cp if si exhibits a desired behavior, and li = Cn if si does not, find an

STL formula φ such that the misclassification rate MCR(φ) is minimized, where the

misclassification rate is defined as:

MCR(φ) :=
|{si | (si |= φ ∧ li = Cn) ∨ (si 6|= φ ∧ li = Cp)}|

N

In the above formula, |·| denotes the cardinality of a set, and (si |= φ ∧ li = Cn)

represents a false positive, while (si 6|= φ ∧ li = Cp) represents a false negative.

3.3 Learning decision trees

In our approach, the key insight to tackle Problem 3.1 is that it is possible to build

a map between a fragment of STL and decision trees. Therefore, we can exploit the

decision trees learning literature (Ripley, 1996; Quinlan, 2014; Breiman et al., 1984)

to build a decision tree that classifies signals and then map the constructed tree to

an STL formula.



46

A decision tree is a tree-structured sequence of questions about the data used to

make predictions about the data’s labels. In a tree, we define: the root as the initial

node; the depth of a node as the length of the path from the root to that node;

the parent of a node as the neighbor whose depth is one less; the children of a node

as the neighbors whose depths are one more. A node with no children is called a

leaf, all other nodes are called non-terminal nodes. In this paper, we focus on binary

decision trees, where every non-terminal node splits the data into two children nodes

and every leaf node predicts a label.

Unfortunately, the space of all possible decision trees for a given classification

problem is very large, and it is known that the problem of learning the optimal de-

cision tree is NP-complete, for various optimality criteria (Hyafil and Rivest, 1976).

Therefore, most decision-tree learning algorithms are based on greedy approaches,

where locally optimal decisions are taken at each node. These greedy growing algo-

rithms can be stated in a simple recursive fashion, starting from the root node, and

require three meta-parameters: the first is a list of possible ways to split the data;

the second is a criterion to select the best split; and the third is a set of rules for

stopping the algorithm.

Several learning algorithms can be created by selecting different meta-parameters.

That is, once the meta-parameters have been fixed, a specific learning algorithm

is instantiated. Since we are not just proposing a single algorithm but a class of

algorithms, we refer to this approach as “decision tree learning framework for temporal

logic inference”. In the next sections, we explain in detail the parameterized algorithm

and the choices we propose for the meta-parameters.

3.3.1 Parameterized learning algorithm

In Alg. 1 we present the parameterized procedure for inferring temporal logic formulae

from data. The meta-parameters of Alg. 1 are: (1) a set of PSTL primitives P ; (2)
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an impurity measure J ; and (3) a set of stopping criteria stop. The algorithm is

recursive and takes as input arguments the formula to reach the current node φpath,

the set of data that reached that node S, and the current depth level h.

Algorithm 1: Parameterized Decision Tree Construction – buildTree(·)
Parameter: P – set of PSTL primitives
Parameter: J – impurity measure
Parameter: stop – set of stopping criteria
Input: φpath – formula associated with current path
Input: S = {(si, li)Ni=1} – set of labeled signals
Input: h – the current depth level
Output: a (sub)-tree

1 if stop(φpath, h, S) then
2 t← leaf(arg maxc∈C{p(S, c;φpath)})
3 return t

4 φ∗ = arg maxψ∈P,θ∈Θ J(S, partition(S, φθ ∧ φpath))
5 t← non terminal(φ∗)
6 S∗>, S

∗
⊥ ← partition(S, φpath ∧ φ∗)

7 t.left← buildTree(φpath ∧ φ∗, S∗>, h+ 1)
8 t.right← buildTree(φpath ∧ ¬φ∗, S∗⊥, h+ 1)
9 return t

At the beginning, the stopping conditions are checked (line 1). If they are met,

the algorithm returns a single leaf node marked with the label c ∈ C. The label c is

chosen according to the best classification quality (line 2), using p(S, c;φpath) defined

in Def. 3.4. If the stopping conditions are not met (line 4), the algorithm proceeds to

find the optimal STL formula among all the valuations of PSTL formulae from the

set of primitives P (details in Sec. 3.3.3). The cost function used in the optimization

is the impurity measure J , which assesses the quality of the partition induced by

PSTL primitives valuations. See Sec. 3.3.4 for details. At line 5, a new non-terminal

node is created and associated with the optimal STL formula φ∗. Next, the partition

induced by the formula φpath∧φ∗ is computed (line 6). For each outcome of the split,

the buildTree() procedure is called recursively to construct the left and right subtrees



48

(lines 7-8). The corresponding formula to reach a subtree and the corresponding data

partition are passed. The depth level is increased by one.

The parameterized family of algorithms uses three procedures: (a) leaf(c) cre-

ates a leaf node marked with the label c ∈ C, (b) non terminal(φ) creates a non-

terminal node associated with the valuation of a PSTL primitive from P , and (c)

partition(S, φ) splits the set of signals S into satisfying and non-satisfying signals

with respect to φ, i.e., S>, S⊥ = partition(S, φ), where S> = {(si, li) ∈ S | si |= φ}

and S⊥ = {(si, li) ∈ S | si 6|= φ}.

By fixing the meta-parameters (P , J , stop), a particular algorithm is instantiated.

For each possible instance, a decision tree is obtained by executing buildTree(>, Sroot, 0)

on the set of labeled signals Sroot. Clearly, the returned tree depends on both the

input data Sroot and the particular instance chosen.

3.3.2 Tree to STL formula

A decision tree obtained by an instantiation of Alg. 1 can be used directly for clas-

sification or converted to an equivalent STL formula using Alg. 2. The algorithm

recursively traverses the subtree t given as input. At each node, the formula is ob-

tained by (1) conjunction of the nodes’s formula with its left subtree’s formula, (2)

conjunction of the negation of the node’s formula with its right subtree’s formula, (3)

disjunction of (1) and (2). During the recursion process, Alg. 2 only keeps track of

the paths reaching leaves associated with the positive class Cp. To produce the final

formula, the algorithm is executed starting from the root node, i.e., Tree2STL(root).

Fig. 3·1 shows a decision tree and its corresponding formula obtained by applying

Alg. 2.
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Algorithm 2: Tree to formula – Tree2STL(·)
Input: t – node of a tree
Output: STL Formula

1 if t is a leaf and class associated with t is Cp then
2 return >
3 if t is a leaf and class associated with t is Cn then
4 return ⊥
5 φl = (t.φ ∧ Tree2STL(t.left))
6 φr = (¬t.φ ∧ Tree2STL(t.right))
7 return φl ∨ φr

φ1

φ2

φ4

Cp Cn

φ5

Cp Cn

φ3

Cp φ6

Cp Cn

Figure 3·1: The formula associated with the tree is φtree =
(
φ1∧

(
(φ2∧

φ4) ∨ (¬φ2 ∧ φ5)
))
∨
(
¬φ1 ∧

(
φ3 ∨ (¬φ3 ∧ φ6)

))
and can be obtained

algorithmically using Alg. 2, where φi, i ∈ {1, . . . , 6} are valuations of
primitive formulae from a set of PSTL formulae P .

3.3.3 PSTL primitives

To partition the data at each node, a finite list of possible splitting rules is usually con-

sidered (Ripley, 1996). We propose to use simple PSTL formulae, called primitives,

to split the data. In particular, we define two types of primitives:

Definition 3.1 (First-Level Primitives). Let S be the set of signals with values in

Rn, n ≥ 1. We define the set of first-level primitives as follows:

P1 =
{
F[τ1,τ2)(xi ∼ µ) or G[τ1,τ2)(xi ∼ µ)

| i ∈ {1, . . . , n}, ∼∈ {≤, >}
}
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The parameters of P1 are (µ, τ1, τ2) and the space of parameters is Θ1 = R×{(a, b) | a <
b, a, b ∈ R≥0}.

Definition 3.2 (Second-Level Primitives). Let S be the set of signals with values in

Rn, n ≥ 1. We define the set of second-level primitives as follows:

P2 =
{
G[τ1,τ2)F[0,τ3)(xi ∼ µ) or F[τ1,τ2)G[0,τ3)(xi ∼ µ)

| i ∈ {1, . . . , n}, ∼∈ {≤, >}
}

The parameters of P2 are (µ, τ1, τ2, τ3) and the space of parameters is Θ2 = R ×
{(a, b) | a < b, a, b ∈ R≥0} × R≥0.

The meaning of first-level primitives is straightforward. The two primitives

F[τ1,τ2)(xi ∼ µ) and G[τ1,τ2)(xi ∼ µ) are used to express that the predicate xi ∼ µ

must be true for at least one time instance or for all time instances in the interval

[τ1, τ2), respectively. Similarly, the second-level primitives can be interpreted in nat-

ural language as: (a) F[τ1,τ2)G[0,τ3)(xi ∼ µ) specifies that “the predicate (xi ∼ µ) of

duration τ3 must be performed and its start time must be in the interval [τ1, τ2)”;

and (b) G[τ1,τ2)F[0,τ3)(xi ∼ µ) specifies that “at each time instance in the interval

[τ1, τ2), the predicate (xi ∼ µ) must be true within τ3 time units”. Both first- and

second-level primitives may be thought as specifications for bounded reachability and

safety with varying degrees of flexibility.

Given a set of primitives P , we denote by STLP the STL fragment obtained by

Boolean closure from P .

Definition 3.3 (Boolean Closure). Let P be a finite set of PSTL formulae. The

fragment of STL formulae induced by P using Boolean closure is defined as:

φ ::= > | ϕ | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2

where ϕ is a valuation of a PSTL formula from P.

STLP is the fragment of STL that is mapped with decision trees. In other terms,
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each decision tree constructed with the set of primitives P is mapped to an STL

formula belonging to the STLP fragment.

Remark 3.1. Note that STLP1 ⊂ STLP2, because

F[τ1,τ2)l ≡ F[τ1,τ2)G[0,0+)l and similarly G[τ1,τ2)l ≡
G[τ1,τ2)F[0,0+)l, where l ≡ (xi ∼ µ) is a linear inequality predicate and 0+ represents

the upper limit towards 0.

Remark 3.2. It is important to stress that the proposed PSTL primitives are not the

only possible ones. A user may define other primitives, either generic ones, like the

first- and second- level primitives, or specific ones, guided by the particular nature of

the learning problem at hand.

3.3.4 Impurity measures

In the previous section, we defined a list of possible ways to split the data using a set

of primitives P . Now, it is necessary to define a criterion to select which primitive

best splits the data at each node. Intuitively, a good split leads to children that are

homogeneous, that is, they contain mostly objects belonging to the same class. This

concept has been formalized in literature with impurity measures, and the goal of the

optimization algorithm is to obtain children purer that their parents. In this section,

we first state the canonical impurity measures and then we propose three modified

measures, which are more suited to handle signals, using the robustness degree.

Definition 3.4 (Impurity Measures). Let S be a finite set of signals, φ an STL

formula and

S>, S⊥ = partition(S, φ). The following partition weights are introduced to describe

how the signals si are distributed according to their labels li and the formula φ:

p> =
|S>|
|S|

, p⊥ =
|S⊥|
|S|

, p(S, c;φ) =
|{(si, li) | li = c}|

|S|
(3.1)

Particulary, p> and p⊥ represent the fraction of signals from S present in S> and S⊥,

respectively, and p(S, c;φ) represents the fraction of signals in S that belong to class

c ∈ C.
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The (canonical) impurity measures are defined as (Breiman et al., 1984; Quinlan,

2014):

- Information gain (IG)

IG(S, {S>, S⊥}) = H(S)−
∑

⊗∈{>,⊥}

p⊗ ·H(S⊗)

H(S) = −
∑
c∈C

p(S, c;φ) log p(S, c;φ) (3.2)

- Gini gain (GG)

GG(S, {S>, S⊥}) = Gini(S)−
∑

⊗∈{>,⊥}

p⊗ ·Gini(S⊗)

Gini(S) =
∑
c∈C

p(S, c;φ)
(
1− p(S, c;φ)

)
(3.3)

- Misclassification gain (MG)

MG(S, {S>, S⊥}) = MR(S)−
∑

⊗∈{>,⊥}

p⊗ ·MR(S⊗)

MR(S) = min(p(S,Cp;φ), p(S,Cn;φ)) (3.4)

We extend the impurity measures to account for the robustness degrees of the

signals to be classified. These extensions are based on the intuition that, according to

Prop. 2.1, the robustness degree can be used in the context of learning as a measure

of the classification quality of a signal with respect to an STL formula.

Definition 3.5 (Extended Impurity Measures).

Consider the same setup as in Def. 3.4, and the same impurity measures, we redefine

the partition weights as follows:

p> =

∑
si∈S> r(s

i, φ)∑
si∈S |r(si, φ)|

p⊥ = −
∑

si∈S⊥ r(s
i, φ)∑

si∈S |r(si, φ)|

p(S, c;φ) =

∑
si∈Sc |r(s

i, φ)|∑
si∈S |r(si, φ)|

(3.5)

where Sc = {si ∈ S | li = c}.
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We will distinguish between the usual impurity measures and the extended ones

by using the subscript r (e.g., IGr) for the extended impurity measures. The following

proposition ensures that the extended impurity measures are well defined.

Proposition 3.1. The intra-partition weights are bounded within 0 and 1 and sum

to 1, i.e., 0 ≤ p>, p⊥ ≤ 1 and p> + p⊥ = 1, in both definitions Def. 3.4 and

Def. 3.5. The same invariant property is true for the inter-partition weights, i.e.,

0 ≤ p(S,Cn;φ), p(S,Cp;φ) ≤ 1 and
∑

c∈C p(S, c;φ) = 1.

Proof. For Def. 3.4, the result is immediate as S>, S⊥ define a partition of S. In the

case of the extended impurity measures in Def. 3.5, note that the robustness of signals

in S> is positive and negative for those in S⊥ by definition of those sets.

Remark 3.3. The advantages of using the extended versions of the impurity mea-

sures over the canonical ones are most pertinent in the context of optimizing these over

PSTL formulae. The robustness-based impurity functions are better behaved cost func-

tions, because these are less flat over the space parameter than their frequency-based

counterparts, i.e., the canonical measures are piecewise constant functions. Also, we

argue that the use of robustness makes the computed classifiers better at generalizing,

i.e., performance on unseen (test) data. The intuition is that the separation bound-

aries tend to be as far as possible from signals of the two classes in the sense of

robustness. In this sense, the canonical measures are unable to distinguish between

formulae which are barely satisfied by some signals from more robust ones. As a future

work, an empirical comparison of the robustness-based measures against the canonical

ones would strengthen this discussion.

Local optimization

The cost function used in the local node optimization (line 4 of Alg. 1) is one of the

impurity measures defined in the previous section. The optimization is performed

over the chosen set of PSTL primitives P and their valuations Θ. Therefore, the

optimization problem is decomposed into |P| optimization problems over a fixed and

small number of real-valued parameters. Consider signals of dimension n. In the case

of P1, we have 4n optimization problems with 3 parameters each. On the other hand,

for P2 we have 4n optimization problems with 4 parameters each.
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The local optimization approach presents several advantages. In particular, the

computation of the robustness values in the definition of the extended impurity mea-

sures (Def. 3.5) can be performed incrementally with respect to the tree data structure

according to the following preposition.

Proposition 3.2. (Incremental Computation of Robustness) At each step

of the recursion of Alg. 1, the robustness of a signal si reaching the current node nc

can be computed as follows

r(si, φtree) = r(si, φpath∧ φ) = min{r(si, φpath), r(si, φ)} (3.6)

where φtree corresponds to the currently computed tree, φpath corresponds to the branch

of the tree from the root to the parent of nc, and φ is a candidate valuation of a PSTL

primitive for nc.

Proof. By construction (see recursion lines), φtree = φpath ∧ φ. By definition of ro-

bustness, r(si, φpath ∧ φ) = min{r(si, φpath), r(si, φ)}.

The first equality in Eq. (3.6) follows from the construction of the tree, because

the robustness of a signal si reaching nc is negative for any other branch of the tree

not ending in nc. The incremental computation can be achieved by taking advantage

of the recursion in the second equality in Eq. (3.6).

Another very important advantage of the proposed approach is that at each itera-

tion of Alg. 1, the data is partitioned between the children of the currently processed

node. Thus, the local optimization problems become easier as the depth of the nodes

increases.

The local optimization problems may be solved using any global non-linear opti-

mization algorithm, such as Simulated Annealing or Differential Evolution. However,

in order to use these numerical optimization algorithms, we need to define finite

bounds for the parameters of the primitive formulae. These bounds may easily be

inferred from data, but may also be application specific, if expert knowledge is avail-

able.
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3.3.5 Stop conditions

Several stopping criteria can be set for Alg. 1. The most common strategy is to just

split until the current node contains only signals from a single class or no signals. This

strategy is very permissive, that is, it allows the algorithm to run for many iterations.

However, it represents the sufficient conditions that guarantee the termination of the

algorithm. Other more restrictive conditions are possible. For instance, stop if the

vast majority of the signals belong to the same class, either positive or negative, e.g.,

stop if 99% of signals belong to the same class. Another common strategy is to stop

if the algorithm has reached a certain, fixed, depth. These conditions usually provide

a faster termination of the algorithm. In general, a set of stopping criteria can be

assembled by picking several stopping conditions, as long as the sufficient conditions

for the termination of the algorithm are included.

3.3.6 Complexity

In this section, we provide a worst-case and average-case complexity analysis of Alg. 1

in terms of the complexity of the local optimization procedure (Alg. 1, line 4). This

complexity analysis assumes that just the sufficient stopping conditions are set. Let

C(N) and g(N) be the complexity of Alg. 1 and of the local optimization algorithm,

respectively, where N is the number of signals to be processed by the algorithms.

Trivially, we have g(N) = Ω(N), where Ω(·) is the asymptotic notation for lower

bound (Cormen, 2009), because the algorithm must at least check the labels of all

signals. The worst-case complexity of Alg. 1 is attained when at each node the optimal

partition has size (1, N − 1). In this case, the complexity satisfies the recurrence

C(N) = C(N−1)+C(1)+g(N), which implies C(N) = Θ(N+
∑N

k=2 g(k)), where Θ(·)

is the two-sided asymptotic notation for complexity bound (Cormen, 2009). However,

the worst case scenario is not likely to occur in large datasets. Therefore, we consider
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the average case where at least a fraction γ ∈ (0, 1) of the signals are in one set of the

partition. The recurrence relation becomes C(N) = C(γN) + C((1 − γ)N) + g(N),

which implies the following complexity bound

C(N) = Θ

N ·
1 +

x∫
1

g(u)

u2
du


obtained using the Akra-Bazzi method (Cormen, 2009). Finally, note that the hidden

constants in the complexity bounds above depend on the cardinality of the set of

primitives considered and the size of their parameterization.

3.4 Case Studies

In this section, we present two case studies that illustrate the usefulness and the

computational advantages of the algorithms. The first is an anomalous trajectory

detection problem in a maritime environment. The second is a fault detection prob-

lem in an automotive powertrain system. The automotive application is particularly

appealing because the systems involved are getting more and more sophisticated. In

a modern vehicle, several highly complex dynamical systems are interconnected and

the methods present in literature may fail to cope with this complexity.

3.4.1 Maritime surveillance

This synthetic dataset emulates a maritime surveillance problem, where the goal

is to detect suspicious vessels approaching the harbor from sea by looking at their

trajectories. It was developed in (Kong et al., 2017), based on the scenarios described

in (Kowalska and Peel, 2012), for evaluating their inference algorithms.

The trajectories are represented with planar coordinates x(t) and y(t) and were

generated using a Dubins’ vehicle model with additive Gaussian noise. Three types of

scenarios, one normal and two anomalous, were considered. In the normal scenario, a
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Figure 3·2: Naval surveillance dataset (Kong et al., 2017). The ves-
sels behaving normally are shown in green. The magenta and blue
trajectories represent two types of anomalous paths.

vessel approaching from sea heads directly towards the harbor. In the first anomalous

scenario, a ship veers to the island and heads to the harbor next. This scenario is

compatible with human trafficking. In the second anomalous scenario, a boat tries to

approach other vessels in the passage between the peninsula and the island and then

veers back to the open sea. This scenario is compatible with terrorist activity. Some

sample traces are shown in Fig. 3·2. The dataset is composed of 2000 total traces,

with 61 sample points per trace. There are 1000 normal traces and 1000 anomalous.
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3.4.2 Fuel control system

We investigate a fuel control system for a gasoline engine. A model for this system is

provided as built-in example in Simulink and we modified it for our purposes. This

model was initially used for Bayesian statistical model checking (Zuliani et al., 2013)

and has been recently proposed as benchmark for the hybrid systems community

(Hoxha et al., 2014). We selected this model because it includes all the complexities

of real world industrial models, but is still quick to simulate, i.e., it is easy to obtain

a large number of traces.

The key quantity in the model is the air-to-fuel ratio, that is, the ratio between the

mass of air and the mass of fuel in the combustion process. The goal of the control

system is to keep it close to the “ideal” stoichiometric value for the combustion

process. For this system, the target air-fuel ratio is 14.6, as it provides a good

compromise between power, fuel economy, and emissions. The system has one main

output, the air-to-fuel ratio, one control variable, the fuel rate, and two inputs, the

engine speed and the throttle command. The system estimates the correct fuel rate

to achieve the target stoichiometric ratio by taking into account four sensor readings.

Two are related directly to the inputs, the engine speed and the throttle angle. The

remaining two sensors provide crucial feedback information: the EGO sensor reports

the amount of residual oxygen present in the exhaust gas, and the MAP sensor reports

the (intake) manifold absolute pressure. The EGO value is related to the air-to-fuel

ratio, whereas the MAP value is related to the air mass rate. The Simulink diagram

is made of several subsystems with different kinds of blocks, both continuous and

discrete, among which there are look-up tables and a hybrid automaton. Due to

these characteristics, this model can exhibit a rich and diverse number of output

traces, thus making it an interesting candidate for our investigation.

The base model, that is, the one included in Simulink, includes a very basic fault
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detection scheme and fault injection mechanism. The fault detection scheme is a

simple threshold crossing test (within a Stateflow chart), and is only able to detect

single off range values. For avoiding the overlap of two anomaly detection schemes,

the built-in one has been removed. In the base model, the faults are injected by simply

reporting an incorrect and fixed value for a sensor’s reading. Moreover, these faults

are always present from the beginning of the simulation. We replaced this simple fault

injection mechanism with a more sophisticated unit. The new subsystem is capable

of inducing faults in both the EGO and MAP sensors with a random arrival time

and with a random value. Specifically, the faults can manifest at anytime during the

execution (uniformly at random) and the readings of the sensors affected are offset by

a value that varies at every execution. Finally, independent Gaussian noise signals,

with zero mean and variance σ2 = 0.01, have been added at the output of the sensors.

For the fuel control system, 1200 total simulations were performed. In all cases,

the throttle command provides a periodic triangular input, and the engine speed is

kept constant at 300 rad/sec (2865 RPM). The simulation time is 60 seconds. In

details, we obtained: 600 traces where the system was working normally; 200 traces

with a fault in the EGO sensor; 200 traces with a fault in the MAP sensor; 200 traces

with faults in both sensors. For every trace, we collected 200 samples of the EGO

and MAP sensors’ readings. Some sample traces are shown in Fig. 3·3. The average

simulation time to obtain a single trace was roughly 1 second.

3.5 Implementation and results

We implemented and tested two different instances of Alg.1, I1 and I2, defined by the

choice of meta-parameters given in Table 3.1. In the case of I1, the implementation

was done in MATLAB using standard libraries, employing the simulated annealing

optimization method, and run on a 3.5 GHz processor with 16 GB RAM. As for
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Figure 3·3: Fuel Control Dataset. Normal traces are shown in green,
anomalous traces are shown in red.
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Instance Primitives Impurity Stopping
I1 P1 MGr Majority class rate > 0.975, Depth > 4
I2 P2 IGr Depth > 3

Table 3.1: Algorithm meta-parameters. See Sec. 3.3 for details.

I2, we used the SciPy library for Python, solving the optimization problem with its

implementation of the differential evolution algorithm, and we tested it on similar

hardware.

3.5.1 Maritime surveillance

We tested the I2 instance using a non stratified 10-fold cross-validation with a random

permutation of the data set, obtaining a mean misclassification rate of 0.007 with a

standard deviation of 0.008 and a run time of about 4 hours per split. A sample

formula learned in one of the cross-validation splits is:

φI2 = (φI21 ∧ (¬φI22 ∨ (φI22 ∧ ¬φI23 ))) ∨ (¬φI21 ∧ (φI24 ∧ φI25 ))

φI21 = G[199.70,297.27)F[0.00,0.05)(x ≤ 23.60)

φI22 = G[4.47,16.64)F[0.00,198.73)(y ≤ 24.20)

φI23 = G[34.40,52.89)F[0.00,61.74)(y ≤ 19.62)

φI24 = G[30.96,37.88)F[0.00,250.37)(x ≤ 36.60)

φI25 = G[62.76,253.23)F[0.00,41.07)(y ≤ 29.90)

(3.7)

We can see in Fig. 3·4 how the thresholds for φ1 and φ2 capture the key features of

the data set. Notice also the insight we can gain from their plain English translation:

“Normal vessels’ x coordinate is below 23.6 during the last 100 seconds, i.e., they

approach and remain at the port”, and “normal vessels’ y coordinate never go below

24.2, i.e., they don’t approach the island”. It is worth mentioning the second term of

the outer disjunction in φI2 , as it highlights a feature of the data set difficult to spot

on the figures: some normal vessels don’t reach the port (inspecting the data set,
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Figure 3·4: Sample of the naval surveillance dataset. Normal trajec-
tories are green and anomalous trajectories are red. We show in blue
the boundaries of φI21 and φI22 of Eq. (3.7).

some normal traces stop right after crossing the passage). As usual when employing

decision trees, deeper formulae focus on finer details of the data set.

In the case of I1, we tested it using a 5-fold cross-validation, obtaining a mean

misclassification rate of 0.01 and a standard deviation of 0.0064. The run time is

about 16 minutes per split. A sample formula learned in one of the splits is:

φI1 = (φI11 ∧ (φI12 ∧ φI13 ) ∨ (¬φI11 ∧ (φI14 ∧ φI15 ))

φI11 = G[94.6,300)(y ≤ 35.3)

φI12 = G[0,300)(y > 23)

φI13 = G[298,300)(x ≤ 25.9)

φI14 = G[182,300)(x ≤ 19.6)

φI15 = G[0,51.6)(x > 42.6)

(3.8)
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Note the similarity between the subformulae φI22 and φI12 , or between φI21 and φI13 in

Eq. (3.7) and Eq. (3.8), respectively.

This dataset was also used in (Kong et al., 2017). Unfortunately, it is not possible

to make a formal comparison between the formulae learned by our approach and the

ones in (Kong et al., 2017). This is due to the fact that iPSTL, defined in (Kong et al.,

2017), and STLP1 (or STLP2) do not represent the same STL fragment. However, it

is always possible to make a comparison in terms of sheer classification performance.

In the comparison, it is clear that we improve the misclassification rate by a factor

of 20 while spending a similar amount of execution time.

3.5.2 Fuel control

In this scenario, we tested both instances using the EGO and MAP sensors’ readings

(variables x1 and x2). We performed a similar cross-validation for I2, resulting in

a mean misclassification rate of 0.054 with a standard deviation of 0.025 and a run

time of about 15 hours per split. A sample formula, obtained from one of the cross-

validation splits, is:

φI2 = ¬φI21 ∧ φI22 ∧ φI23

φI21 = F[1.85,58.70)G[0.00,0.57)(x1 ≤ 0.13)

φI22 = G[11.35,59.55)F[0.00,0.03)(x1 ≤ 0.99)

φI23 = G[1.65,58.89)F[0.00,0.44)(x2 ≤ 0.90)

(3.9)

Notice in this case how the resulting subformulae are equivalent to first-level primi-

tives, suggesting that P2 is an overly complicated set of primitives.

Regarding I1, using a 5-fold cross-validation, we obtained a mean misclassification

rate of 0.075 and a standard deviation of 0.0256. The run time is about 18 minutes
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per split. A sample formula learned in one of the splits is:

φI1 = φI11 ∧ (φI12 ∧ (φI13 ∧ φI14 ))

φI11 = G[0,59.7)(x2 > −0.563)

φI12 = G[0,59.7)(x2 ≤ 1.91)

φI13 = G[0,59.7)(x1 > −0.819)

φI14 = G[23.7,59.7)(x1 ≤ 1.78)

(3.10)

In both case studies, the execution time of I2 is higher then I1. This occurs because

the instance I2 involves a more complicated optimization problem. Specifically, I2 uses

primitives from P2 with 4 free parameters, whereas I1 uses primitives with only 3 free

parameters.
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Chapter 4

Assumption Mining

In this chapter, we show how an Assume-Guarantee Contract (AGC) approach can be

used to address the scalability issues of our solution to the boundary control synthesis

problem described in the first part of the dissertation. Then, we formulate the related

subproblem of assumption mining and propose a sampled based algorithm to solve

it. Our method produces an approximation to the set of assumptions by iteratively

sampling from within and without the set of assumptions. From these samples, an

STL formula representing the current approximation is inferred. A tolerance control-

ling the quality of the approximation can be set and we provide an explicit bound on

this quality in terms of the tolerance. A simple case study is presented to illustrate

the algorithm.

4.1 Assume-Guarantee Contracts and Assumption Mining

In this section we formalize the assumption mining problem. As motivation, we first

formalize the distributed control synthesis problem and how it can be solved through

the use of assume-guarantee contracts. Assumption mining is the first step towards

the synthesis of assume-guarantee contracts for a distributed system. Note that we

do not solve the distributed control synthesis problem in this work.

Let Σ(u) be the discrete-time system described by the following relation:

Σ(x0, u) : xk+1 = Axk +Buk + F , (4.1)
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where xi ∈ Ω ⊂ Rn, ui ∈ U ⊂ Rm, u = u0u1... and x0 is given. Let the system be

partitioned in l subsystems, {Σi}li=1, where each subsystem has the following form:

Σi(u) : xik+1 = Aixik +Biuik +
∑
j 6=i

Aj→ixj→ik + F i , (4.2)

where the state vector x and control vector u have been partitioned (i.e., there are no

shared states or controls), and the system matrices have been rewritten accordingly.

Note that xj→i refers to the set of state variables corresponding to subsystem j that

have direct influence in subsystem i.

Consider an STL formula φ =
∧l
i=1 φ

i, where φi is an STL formula over xi. We

define the distributed control synthesis problem as the following:

Problem 4.1 (Distributed control synthesis). Find a control policy u = u0u1..., with

uit dependent on the state and control history of subsystem i, such that Σ(u) |= φ.

An Assume-Guarantee Contract (AGC) is an STL formula ψi→j over xi→j. Our

objective is to find a set of AGCs such that there exists local control policies ui

satisfying the following property:

∀i = 1, ..., l : (∀j 6= i : Σj(u) |= ψj→i) =⇒ Σi(u) |= φi ∧ (
∧
j 6=i

ψi→j) . (4.3)

In other words, if a subsystem has all its assumptions guaranteed, then it can satisfy

the local specification and its guarantees. We call a set of contracts satisfying this

property well posed.

The relevance of Problem 4.1 to our work is the following: suppose we have a

boundary control synthesis problem for a PDE system. If the discretized system

and S-STL specification (as defined in Chapter 2) can be decomposed in discrete

time subsystems and local STL specifications as described above, then we can solve

the boundary control synthesis problem by solving a distributed control synthesis

problem. The use of AGCs has been proven useful in the solution of Problem 4.1, see
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for example (Sadraddini et al., 2017).

We move now to assumption mining, a first step in the synthesis of well posed

AGCs. Let Σ(x0, z) be the discrete-time system described by the following relation:

Σ(x0, z) : xk+1 = Axk +Dzk + F , (4.4)

where xi ∈ Ω ⊂ Rn, zi ∈ Z ⊂ Rm, z = z0z1.... Let φ be an STL formula over x. We

define the assumption mining problem as the following:

Problem 4.2 (Assumption mining). Find an STL formula φa over x0 and z such that

if (x0, z) |= φa then Σ(x0, z) |= φ. In addition, for any other STL formula φ′a such

that φ′a =⇒ φa and they are not logically equivalent, if (x0, z) |= φ′a and (x0, z) 6|= φa

then Σ(x0, z) 6|= φ.

In the following, we require the following assumption:

Assumption 4.1. The subsets Ω and Z are bounded.

Our solution to the assumption mining problem is an adaptation of the sampled

based algorithm found in (Kim et al., 2016) such that it does not assume any kind of

monotonicity of the system. This assumption does not generally hold in discretized

PDE systems, which prevents us from using the cited algorithm as a basis for solving

the distributed control synthesis problem for PDEs. When the monotonicity assump-

tion is not met, the set of assumptions is no longer possible to describe as an STL

formula of special form (so called directed specifications), which can be easily con-

structed from a set of valid and invalid assumptions. Instead, we must use a general

inference algorithm that can provide us with an STL formula that describes the sets

of assumption samples.

4.2 Online Decision Tree STL Inference

In order to produce an STL formula from a set of assumption samples, an STL

inference algorithm such as the one described in Chapter 3 must be used. Since
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the assumption mining algorithm will incrementally collect samples and obtain STL

formulas representing them, we present here a simple online version of the STL infer-

ence algorithm. For a thorough discussion on online STL inference refer to (Bombara,

2020).

We will instantiate the STL inference algorithm with the following meta-parameters:

let P be the set of first-level primitives described in Def. 3.1, J the extended informa-

tion gain impurity measure IGr, and stop the perfect classification stopping criteria

(i.e., the recursive algorithm only stops once a tree that perfectly classifies the train-

ing set is constructed). In the online version shown as pseudocode in Algorithm 3, we

start by constructing a decision tree with the initial training set. As a new sample

is received, we find the leaf corresponding to the sample and run the recursive step

on the leaf. If it is impure, it will be split until perfect classification is achieved (the

stopping condition). Otherwise, the tree remains unchanged. After a set amount of

new traces has been incorporated to the training set, the current tree is discarded

and a new one is built.

4.3 Sampling Based Assumption Mining

In this section we present an algorithm that computes an ε-approximation to the

solution of Problem 4.2, φa. Algorithm 4 obtains an approximation φ̃a to φa such

that φ̃a =⇒ φa, i.e., it represents an underapproximation to the set of admissible

traces of φa. Once an underapproximation is obtained, the algorithm improves the

approximation by growing the set of admissible traces of φ̃a. If at some point the

formula admits traces that should not be in φa, the approximation is shrinked until

it becomes an underapproximation again.

The approximations are computed using a mix of sampling-based techniques, ma-

chine learning and MILP solving. At every iteration of the algorithm, we attempt
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Algorithm 3: Online Decision Tree Construction – fitNewSample(·)
Parameter: k – samples to process online before rebuilding tree
Input: tcur – current tree
Input: (s, l) – new labeled signal (sample)
Output: the new tree

1 if tcur.newsamples > k then
2 tcur ← buildTree(>), tcur.signals ∪ {(s, l)}
3 tcur.newsamples← 0
4 return tcur

5 t← FindLeaf(tcur, s)
6 if Classify(tcur, s) 6= l then
7 t′ ← buildTree(Path(t), t.signals ∪ {(s, l)}, Depth(t) + 1)
8 SubstituteNode(tcur, t, t

′)

9 else
10 t.signals← t.signals ∪ {(s, l)}
11 tcur.newsamples← tcur.newsamples+ 1
12 return tcur

to find a trace satisfying φ̃a such that Σ(x0, z) 6|= φ. This is done by solving the

optimization problem posed in Line 4, which can be encoded as an MILP and solved

using off-the-shelf tools. If one is found, we keep that sample as an unsatisfying

sample (Line 6). Otherwise, we attempt to find a trace not satisfying φ̃a such that

Σ(x0, z) |= φ (Line 8) and keep it as a satisfying sample (Line 10). If a sample

was added, we recompute φ̃a using a temporal inference tool (Line 3). The result-

ing formula is satisfied by all satisfying samples and not satisfied by all unsatisfying

samples.

In order to improve the performance of the algorithm, we “bloat” φ̃a and its

negation when we solve the optimization problems. We do this by constraining the

samples to be satisfying with robustness larger than a positive real number ε. This also

ensures the algorithm doesn’t get stuck changing the size of the set of satisfying traces

by vanishing amounts. If no new sample is found in an iteration of the algorithm, we

decrease ε using a learning parameter α (Line 12) until we reach a minimum tolerance.
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The quality of the approximation is established in the following theorem:

Theorem 4.1. Algorithm 4 finishes in finite time and the returned φ̃a satisfies the

following properties:

1. If ρ(φ̃a, (x0, z)) > ε0 then Σ(x0, z) |= φ.

2. If ρ(φ̃a, (x0, z)) < −ε0 then Σ(x0, z) 6|= φ.

Proof. To show that the algorithm ends, first note that |ρ(φ, s) − ρ(φ, s′)| < ε if

||s − s′||∞ < ε (for STL formulas with predicates of the form si ∼ λ. For general

Lipschitz continuous predicates, the result holds as well using a bound dependent

on the Lipschitz constants of the predicates). The algorithm continues for as long

as new samples are added (Lines 6 and 10). Every new UNSAT (respectively SAT)

sample has robustness more than ε with respect to the current φ̃a (respectively ¬φ̃a),
while all current UNSAT (respectively SAT) samples have negative robustness. Then,

the distance (in infinite norm) of the new sample must be more than ε from other

UNSAT (respectively SAT) samples. Since the space is bounded (Assumption 4.1),

the process must end.

Since the algorithm ends, the last loop must be with ε = ε0 and Line 12 is reached.

Then, ρ in Line 4 is positive, i.e., ∀(x0, z) : ρ(φ̃a, (x0, z)) > ε0 =⇒ ρ(φ,Σ(x0, z)) > 0,

and ρ in Line 8 is negative, i.e., ∀(x0, z) : ρ(φ̃a, (x0, z)) < −ε0 =⇒ ρ(φ,Σ(x0, z)) <

0.

4.4 Case Study

We illustrate the assumption mining algorithm on a 2D first order system with no

external inputs so that the results can be visualized.

Let Σex(x0, z) be the system described by the following matrices:

A =

(
0.3 −0.1
0.1 0.3

)
, D = 0, F = 0 , (4.5)

with Ω = [−10, 10]× [−10, 10]. The STL specification is the following:

φex = (G[2,4]x0 > −4) ∨ (G[2,4]x0 < 4) . (4.6)
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Algorithm 4: Assumption Mining

Input: Σ – System, φ – STL formula over x, ε0 – target tolerance, ε – initial
tolerance, α – learning rate,

Output: φ̃a – STL formula over (x0, z)

1 samples← ∅
2 while ε ≥ ε0 do

3 φ̃a ← Fit(samples)

4 ρ← minx0,z ρ(φ,Σ(x0, z)) s.t. Σ(x0, z) |= φ; ρ(φ̃a, (x0, z)) > ε
5 if ρ < 0 then
6 samples← samples ∪ ((x̄0, z̄), UNSAT )
7 else

8 ρ← maxx0,z ρ(φ,Σ(x0, z)) s.t. Σ(x0, z) |= φ; ρ(¬φ̃a, (x0, z)) > ε
9 if ρ > 0 then

10 samples← samples ∪ ((x̄0, z̄), SAT )
11 else
12 ε← αε

13 return φ̃a

We ran the assumption mining algorithm with a target tolerance ε0 = 0.75, initial

tolerance ε = 1.5 and learning rate α = 0.5. It took 150 seconds and 88 samples to

produce the approximate assumption STL formula φ̃a represented in Fig. 4·1 as the

blue set.
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Figure 4·1: Final iteration before the target tolerance is reached.
Shown in green are initial states contained in the assumption set, while
those in red are outside of it. We show in blue the set of states that
satisfy φ̃a.
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Chapter 5

Constitutive Property Design

Our main goal in this chapter is to produce a wide variety of mechanical behaviors out

of a single material. For example, can we give an elastic material a tunable, effective

yield point, or make it strain harden or soften at a specified amount of displacement?

This response to loading can be determined from the stress-strain curve, which serves

as a fundamental piece of information that describes the global mechanical properties

of structures and materials. Recent advances in mechanical metamaterials have shown

that it is possible to tailor the relationship between stress and strain of a particular

material through structural patterning (Bertoldi et al., 2008).

In order to formally specify the desired response of the structure, we introduce a

formal language over stress-strain curves as well as show how S-STL can be adapted

for this purpose. Then, we propose an optimization procedure based on gradient-free

optimization algorithms and simulation. We illustrate the viability of our approach

with an example featuring elastomeric structures.

5.1 Stress-Strain Curves and Logics

We first describe a model for the stress-strain response of a structure, then we in-

troduce a new logic capable of describing properties of interest of the response of

the structure. This logic, which we call Stress-Strain Predicate Logic (SSPL) is a

predicate logic that captures most quantities of interest in a stress-strain curve in a

user-friendly fashion. Alternatively, the spatio-temporal logic described in Chapter 2,
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S-STL, can be easily adapted to this problem.

A stress-strain (s-s) curve σ(ε) is a vector valued function σ(ε) = (σ+(ε), σ−(ε)),

where σ+(ε) represents the relationship between stress and strain in a material when

a load is placed upon it (increasing strain), while σ−(ε) is produced when the load

is reduced (decreasing strain). There are well-known methods used to obtain a s-s

curve from a specimen of the material or through simulation. We require the curves

to satisfy the following natural assumptions: 1) σ+(0) = σ−(0) = 0; 2) σ+(εu) =

σ−(εu), εu = max(Domain(σ)); 3) σ+(ε) ≥ σ−(ε),∀ε.

A formula φ in SSPL is described as a conjunction of predicates µ = (p, α, I),

where:

• p ∈ R is a priority,

• α is a real valued function of a s-s curve that produces a quantity of interest

from the curve, and

• I = [a, b] ⊂ R is an interval that represents the allowed or desired range of the

quantity produced by α.

A curve σ satisfies µ = (p, α, I) iff α(σ) ∈ I. As an example, consider the following

real language specification: “The positive Young’s Modulus of the curve should be

within 100 GPa and 125 GPa with high priority and the positive yield stress should

be within 200 MPa and 250 MPa with normal priority”. The corresponding formula

would be:

φexample = (2.0, E+
1 , [100 · 109 ,125 · 109 ]) ∧ (1.0, σ+

y , [200 · 106 ,250 · 106 ]) , (5.1)

where E+
1 computes the Young’s Modulus of the positive curve (σ+) and σ+

y com-

putes its yield stress. Some quantities of interest are defined next and represented

graphically over a typical s-s curve in Fig. 5·1. A user of this language will usually



75

Figure 5·1: Typical s-s curve

be presented with a collection of quantities of interest to be used to define a specifi-

cation. Additionally, the user can define new quantities of interest as needed. In the

following, o ∈ {+,−}.

• εu: the maximum strain reached by the curve.

• σu: the stress corresponding to the maximum stress reached by the curve.

• Eo
1 : the slope of the curve at strain close to 0 (increasing or decreasing).

• Eo
2 : the slope of the curve at strain close to maximum.

• εoy: the yield strain at which the curve first stops exhibiting linear behavior

when increasing strain from 0 (correspondingly, when it becomes linear until 0

strain when decreasing it).

• σoy: the yield stress corresponding to the yield strain.

• JD: the area between the increasing and decreasing parts of the s-s curve.

• N o: the necking region, i.e., the amount of additional strain one can apply to

the material after the yielding point while keeping the stress almost level.
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For some applications, knowing whether a s-s curve satisfies or not the specification

is not enough and a numerical score related to how much the specification is violated or

how robustly it is satisfied is needed. We call these scores the quantitative semantics

of the language. We propose two kind of scores: an STL-like score extended with

priorities and a smooth score.

STL-like: We define the robustness of a predicate, rSTL, as in STL without time,

i.e., rSTL(µ, σ) = min{α(σ)−a, b−α(σ)} and the usual rule for conjunctions rSTL(µ1∧

µ2, σ) = min{rSTL(µ1, σ), rSTL(µ2, σ)}. From this robustness we define the score as

the degree of violation of the formula weighted by the priorities of each predicate:

r(
∧
i

µi, σ) =
∑
i|σ 6|=µi

pirSTL(µi, σ) . (5.2)

Note that r(φ, σ) < 0 ⇐⇒ σ 6|= φ. Since no quantitative information is obtained for

satisfied formulas, we can switch to rSTL when r = 0 at the cost of ignoring priorities

in that case.

Smooth score: We use three steps to define a smooth function r such that r(φ, σ) >

0 ⇐⇒ σ |= φ.

• The basic score for a predicate µ is computed as s(µ, σ) = α(σ)−a
b−a . Note that

σ |= µ ⇐⇒ s(µ, σ) ∈ [0, 1] and the best score should be assigned to s = 0.5.

• We transform s in the following way: when s(µ, σ) 6∈ [0, 1] it should be 0. Inside

[0, 1], it should increase smoothly from 0 until a maximum of 1 at s = 0.5 then

decrease smoothly back to 0. We call this transformation T . There are several

options for T such as appropriately scaled sin and many sigmoid-like functions.

• We define r using exponentiation for priorities and product for conjunctions:

r(
∧
i

µi, σ) =
∏
i

T (s(µi, σ))pi . (5.3)
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We show in Fig. 5·2 how the score for a single predicate would look like with

different priorities.

This score has the opposite problem from the STL-like score: we lose all quan-

titative information when the specification is violated. We can solve this issue by

switching to the STL-like score when r = 0. Alternatively, in some applications where

these scores are used to guide a search for the best satisfying s-s curve, the search

can be started with a relaxed smooth score by increasing the size of the predicate

intervals. Once a s-s curve is found that satisfies the relaxed formula, the relaxation

can be reduced.

(a) Low priority (b) Standard priority (c) High priority

Figure 5·2: Shape of the smooth score against the basic score of a
predicate with different priorities.

We show in Fig. 5·3 how the typical user would define a specification using the

Figure 5·3: Proposed workflow for Stress-Strain curve verification.
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language defined above and use it to verify whether a given s-s curve satisfies it. First,

the user would have a choice of drawing the desired curve and supplying an allowed

tolerance (measured with respect to the quantities of interest), or inputing directly

the priority and allowed interval for each quantity of interest available in a predefined

collection. If a drawing is supplied, it is then automatically converted to the direct

input which can be then inspected and modified by the user. From this input, the

formula φ is automatically constructed. When the user wants to verify whether a

given s-s curve σ satisfies the specification, the score of the formula φ is computed

for σ using the scores defined above. The score is shown to the user, who can infer

the satisfaction of the formula from the sign of the score (positive iff satisfies) and by

how much the formula is satisfied or violated (with high positive values meaning very

robustly satisfying and low negative values meaning very far from satisfaction).

5.2 Problem Formulation and Solution

Beyond verification, we are interested in the synthesis of a structural pattern that

allows a material to exhibit the specified constitutive response. The problem formu-

lation has the following form:

Problem 5.1 (Constitutive Response Design). Given a specification over s-s curves

φ, a block of material, and constraints on the patterning allowed, find an allowed

patterned structure with a stress-strain relationship that satisfies φ.

We propose to solve Problem 5.1 by optimizing the score of the formula with

respect to s-s curves obtained by simulation of the patterned structures. This opti-

mization is done using a gradient-free optimization algorithm.

Given a desired constitutive response of the material formally specified as a for-

mula φ in either SSPL or S-STL, an optimization process is used to synthesize a

geometric configuration of the material that produces a sasisfying constitutive re-
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sponse. Formally, the optimization problem that we solve is the following:

max
p

r(φ, σ(·; p))

s.t. p ∈ P ,

V alid(p) ,

(5.4)

where r is an appropriate score for the language, P is the parameter space that

describes the patterns, V alid are general constraints on the patterns given by the

user and σ(·; p) is the s-s curve of the material produced using the pattern given by

p.

Regardless of the choice of language, score or parameterization, our optimization

process has the following basic structure: first, we produce a parameterized model of

the patterned material in a simulation tool such as ANSYS or ABAQUS. Then, we

configure the simulation tool so that a s-s curve can be obtained for any valid pattern

with enough accuracy and speed. Once this is set up, we can begin the optimization

itself, which is non-linear, non-convex and possibly the objective function is not even

continuous with respect to the parameters. Thus, a general gradient-free optimization

method such as differential evolution (Storn and Price, 1997) must be used. Each

parameter is evaluated by simulating the corresponding patterned material, obtaining

the s-s curve and computing its score with respect to the specification.

5.3 Case Study

We present here an example highlighting the solution for the synthesis problem based

on the work presented in (Shim et al., 2013b).

A square sheet of rubber of side L = 8 cm and thickness h = 1 cm is drilled

with circular holes of radius r constrained to be within the interval [0.3 cm, 0.4 cm]

and distributed in a lattice given by the vectors v1, v2 ∈ R2 such that they do not
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intersect. The constitutive response was obtained as a positive force-displacement

curve (analogous to the positive part of an s-s curve σ+) by loading the material with

a force F (t) applied uniformly across the top surface such that the discplacement at

the top surface increases linearly from 0 to 1.05 cm in 3.5 seconds. The specification

in this case is to have the force-displacement curve of the material to be within

ε tolerance of a target curve p, which can be expressed in S-STL as the following

formula:

φ = ∀x ∈ {(0, L)} : G[0,T ](F < p(d2(x)) + ε ∧ F > p(d2(x))− ε) ,

p(d) =


40

7.5 · 10−3d d < 7.5 · 10−3 ,

40 d > 7.5 · 10−3 ,

(5.5)

where d2(x) represents the displacement of the top boundary at x, F is the applied

force, the temporal operator G[0,T ]ψ means that ψ must be satisfied at all times in

the interval and the spatial operator ∀x ∈ {(0, L)} : ψ means that ψ must be satisfied

at all points in the interval. Note that, compared SSPL, this logic has two main

disadvantages: it explicitly considers time in an essentially static problem; and it is

not well suited to the description of s-s curves, as it does not allow explicit references

to the positive and negative parts of the curve, tolerance is considered with respect

to the full curve, and quantities of interest of the curve cannot be directly referenced

with ease.

We solve this problem using differential evolution to find the best pattern with

respect to the S-STL score of the specification φ. We generate simulations of the

system using the FEM simulator ANSYS. After 280 evaluations performed in about

38 hours, we obtained the pattern depicted in Fig. 5·4a, which results in a S-STL

score of 0.641. We show in Fig. 5·4c the resulting force-displacement curve as well as

the satisfying region for φ. It is important to note that these FEM simulations were
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(a) Best geometric design
found.

(b) Displacement at full
load.

(c) Force-displacement curve
for the obtained geometric
design shown in Fig. 5·4a in
blue, with the target curve
in solid red and satisfiable
region delimited by the two
dashed red lines.

Figure 5·4: Results for constitutive design.

run accounting for both geometric nonlinearity (i.e., finite deformation kinematics) as

well as material nonlinearity (a Neo-Hookean material model for rubber elasticity).
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Chapter 6

Conclusions and Future Work

In this dissertation we considered a formal methods approach to the design of PDE

systems. In particular, we focused on two design problems: a boundary control prob-

lem with spatio-temporal specifications over the state of the PDE, and a constitutive

response design problem where a geometric structure must be obtained for a specifi-

cation over the intrinsic properties of the PDE.

In the first part of the dissertation, we formulated and solved boundary control

synthesis and verification problems for systems governed by a multi-dimensional, pos-

sibly non-linear, PDE with specifications given in an extension to STL. Our solution

relies on the approximation of the PDE using the FEM, which reduces the problem to

the control synthesis of a discrete-time linear system under regular STL constraints.

The reformulation requires correcting the predicates in the formula using the FEM

approximation errors, as well as the derivatives of the approximated solution and

the predicate functions, to account for approximation and discretization errors. Fi-

nally, the resulting control problem is encoded as a MILP, which we show can be

solved in minutes when a good approximation to the optimal solution obtained using

gradient-free optimization methods can be used as a starting point for the MILP

solver. However, our method becomes untractable as the complexity of the PDE in-

creases. We explored the performance of the method in 1D, 2D, first order, second

order, linear and nonlinear PDEs. Plans for future work include studying the viability

of the approach on more complex nonlinear PDEs.
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In the second part of the dissertation, we proposed a sampled based algorithm for

assumption mining in non-monotone systems. We follow existing work by iteratively

constructing an approximation to the assumption set obtaining samples both within

and without the set. While in monotone systems this sets have a structure that makes

them easy to define, we instead represent them as STL formulas inferred from the

set of samples. As future work, we plan to apply the assumption mining algorithm

in more challenging scenarios. In addition, we plan to build on top of this algorithm

towards a full decentralized control synthesis framework based on assume-guarantee

contracts.

Also in this part, we presented an STL inference framework based on decision

trees. The proposed framework describes decision-tree learning algorithms which

may be customized through a set of primitive properties of interest, an impurity

measure which captures the node’s homogeneity, and stopping conditions for the

algorithm. The performance advantage of the proposed procedures is due to the

incremental nature of growing STL formulas represented as trees. We also defined

extended versions of the classical impurity measures such that these take into account

the robustness degrees of signals. We argue that the extended versions of the impurity

measures increase the generalization capability of the resulting formulas.

In the final part of the dissertation, we considered the problem of designing the

geometry of structures such that a specification over the constitutive response of the

structure is met. We defined a predicate logic capable of describing the constitutive

response of a mechanical system in a user-friendly way, although we also showed how

S-STL can be used as well. Then, we described an optimization procedure that can

be used to generate the geometric design that produces the best fitting constitutive

response. We showed the viability of our approach on elastomeric structures. In

our future work, we plan to implement the proposed SSPL logic and explore the
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different proposed scores. Moreover, we plan to improve the optimization procedure.

As the model simulation is very expensive, a possible improvement would be to cache

simulation results. Since these results contain a very large amount of data, a machine

learning technique could be used to obtain an approximate map from the model

parameters to the minimal amount of data required to compute the score.

6.1 Future Research Directions

From this dissertation, we foresee two main avenues of future research. The first one

focuses on improving the framework proposed in the first part of the dissertation as a

solution to the tunable fields problem. In its current state, the range of problems we

can solve is limited to small PDE models with simple geometries that can be accu-

rately approximated using very simple FEM models with a small number of elements.

However, most real world problems require FEM models with several orders of mag-

nitude more elements. We consider our framework to have the potential to solve such

problems, at least in the linear case, but a scalable solution must first be developed.

In the second part of the dissertation we started work on one such solution based on

assume-guarantee contracts. In addition, the development of this solution or others

to the scalability problem is, in itself, an interesting and challenging problem in the

field of formal methods with applications in other fields such as spatially distributed

systems.

The second main research direction is in the solution of the constitutive design

problem. Our proposed solution can be improved in several ways, such as by further

exploring the proposed SSPL logic or by designing a better optimization procedure

that takes into account the high cost of model simulation. Once the framework is

refined to the point where it can handle real world models and specifications that can

be put to test in the laboratory, collaboration with materials science researchers can
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yield results of interest not only to the formal methods community but also in the

materials science community.

Besides these two main directions, we should also mention the following idea:

would it be possible to combine the tunable fields and constitutive response design

problems? Could we develop a formal methods framework that would allow us to

design a structure with a desired intrinsic behavior as well as boundary conditions

that operate the structure such that it satisfies a given specification? Note that the

difficulty here is that for some allowed constitutive responses, satisfaction of the field

specification might prove unfeasible. At present, we consider this combined problem

the ultimate goal of research in formal methods for PDEs.
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Asarin, E., Donzé, A., Maler, O., and Nickovic, D. (2012). Parametric identification
of temporal properties. In Runtime Verification, pages 147–160. Springer.

Bartocci, E., Gol, E. A., Haghighi, I., and Belta, C. (2016). A Formal Methods
Approach to Pattern Recognition and Synthesis in Reaction Diffusion Networks.
IEEE Transactions on Control of Network Systems, PP(99):1–1.

Bemporad, A. and Morari, M. (1999). Control of systems integrating logic, dynamics,
and constraints. Automatica, 35(3):407–427.

Bendsoe, M. P. (1989). Optimal shape design as a material distribution problem.
Structural Optimization, 1:193–202.

Bendsoe, M. P. and Sigmund, O. (1999). Material interpolation schemes in topology
optimization. Archives of Applied Mechanics, 69:635–654.

Bertoldi, K., C. Boyce, M., Deschanel, S., M. Prange, S., and Mullin, T. (2008).
Mechanics of deformation-triggered pattern transformations and superelastic be-
havior in periodic elastomeric structures. Journal of The Mechanics and Physics
of Solids, 56:2642–2668.

Bertoldi, K., Vitelli, V., Christensen, J., and van Hecke, M. (2017). Flexible me-
chanical metamaterials. Nature Reviews Materials, 2:17066.

Bombara, G. (2020). Learning Temporal Logic Formulae from Data. PhD thesis,
Boston University (https://open.bu.edu/handle/2144/39359).

86



87

Bombara, G., Vasile, C.-I., Penedo, F., Yasuoka, H., and Belta, C. (2016). A Decision
Tree Approach to Data Classification Using Signal Temporal Logic. In Proceedings
of the 19th International Conference on Hybrid Systems: Computation and Control,
pages 1–10, New York, NY, USA. ACM.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and
regression trees. CRC press.

Bruns, T. E. and Tortorelli, D. A. (2001). Topology optimization of non-linear elastic
structures and compliant mechanisms. Computer Methods in Applied Mechanics
and Engineering, 190:3443–3459.

Bruns, T. E. and Tortorelli, D. A. (2003). An element removal and reintroduction
strategy for the topology optimization of structures and compliant mechanisms.
International Journal for Numerical Methods in Engineering, 57:1413–1430.

Buhl, T., Pedersen, C. B. W., and Sigmund, O. (2000). Stiffness design of geometri-
cally nonlinear structures using topology optimization. Structural and Multidisci-
plinary Optimization, 19:93–104.

Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly Detection: A Survey.
ACM Computing Surveys, 41(3):15:1–15:58.

Clausen, A., Wang, F., Jensen, J. S., Sigmund, O., and Lewis, J. A. (2015). Topology
optimized architectures with programmable poisson’s ratio over large deformations.
Advanced Materials, 27:5523–5527.

Cormen, T. H. (2009). Introduction to Algorithms. MIT Press, third edition.

Deaton, J. D. and Grandhi, R. V. (2014). A survey of structural and multidisciplinary
continuum topology optimization: post 2000. Structural and Multidisciplinary
Optimization, 49:1–38.
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Raman, V., Donzé, A., Maasoumy, M., Murray, R. M., Sangiovanni-Vincentelli, A.,
and Seshia, S. A. (2014). Model predictive control with signal temporal logic
specifications. In 53rd IEEE Conference on Decision and Control, pages 81–87.

Reis, P. M., Jaeger, H. M., and van Hecke, M. (2015). Designer matter: a perspective.
Extreme Mechanics Letters, 5:25–29.

Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge university
press.

Sadraddini, S. and Belta, C. (2015). Robust temporal logic model predictive con-
trol. In 2015 53rd Annual Allerton Conference On Communication, Control, and
Computing (Allerton), pages 772–779. IEEE.

Sadraddini, S., Rudan, J., and Belta, C. (2017). Formal Synthesis of Distributed Op-
timal Traffic Control Policies. In Proceedings of the 8th International Conference
on Cyber-Physical Systems, ICCPS ’17, New York, NY, USA. ACM.
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